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NUMERICAL THERMAL ANALYSES OF HEAT EXCHANGERS FOR THE

STIRLING ENGINE APPLICATION

MOHAN RAJ KANNAPAREDDY

ABSTRACT

p30C6
The Regenerator, Cooler and Heater for the NASA Space Power Research Engine f) ‘5?‘

(SPRE) have been analyzed in detail for laminar, incompressible and oscillatory flow
conditions. Each component has been analyzed independently and in detail with the
regenerator being modeled as a/parallel—plates channel with a solid wall. The ends of the
o >vou
channel are exposed to two reservoir maintained at different temperature thus facilitating
/a"axial temperature gradient along the channel. The cooler and heater components have
been modeled as circular pipes with isothermal walls. Two different types of thermal
boundary cond:tions have been investigated for the cooler and heater, namely, symmetric
and asymmetric temperature inflow. In symmetric temperature inflow the flow enters the
channel with the same temperature in throughout the velocity cycle whereas, in
asymmetric temperature inflow the flow enters with a different temperature in each half
cycle. The study was conducted over a wide range of Maximum Reynolds number

(Re_,,) varying from 75 to 60000, Valensi number (Va) from 2.5 to 800, and relative

max
amplitude of fluid displacement (A_) from 0.357 to 1.34.
A two dimensional Finite Volume method based on the SIMPLE algorithm was

used to solve the governing partial differential equations. Post processing programs were  _



developed to effectively describe the heat transfer mechanism under oscillatory flows.
The computer code was validated by comparing with existing analytical solutions for
oscillating flows.

The thermal field have been studied with the help of temperature contour and three
dimensional plots. The instantaneous friction factor, wall heat flux and heat transfer
coefficient have been examined. It has been concluded that in general, the frictional
factor and heat transfer coefficient are higher under oscillatory flow conditions when the
Valensi number is high. Also, the thermal efficiency decreases for lower A, values.
Further, the usual steady state definition for the heat transfer coefficient does not seem

to be valid. _-
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NOMENCLATURE

Half channel width in the conjugate problem.
Relative amplitude of fluid motion.

Half solid thickness in the conjugate problem.
Specific Heat of the fluid or solid.

Hydraulic diameter of the tube or channel.
Thermal conductivity.

Length of the channel or tube.

Nusselts’s number.

Hydrodynamic pressure in the momentum equations.
Peclet number used in the analytical solution,
=—(—]°—aPr.

v
Prandtl number of the fluid.
Heat flux.

Radial coordinate distance and direction for Axisymmetric cases or,
the radius of the tube.

Reynolds number based on the maximum velocity [u
Time [s].

Temperature in K, T(x,y,t) or T(x,rt).

Section averaged temperature of the fluid, T _(x,0)

_fTrdr

frdr '

Bulk temperature of the fluid weighted by the absolute velocity,

u(r)| T rdr
Tb (x,t) =f|—._l_..._.__ .
f lu(r)| rdr
Time averaged temperature, T (x,y) ,
=[T, .+Yx].

Axial velocity in the x coordinate direction,u (x,y,t) or u(x,r,t) .
Representative axial velocity for the analytical solution.

Axial velocity at the inlet,u, () .

Maximum input velocity in a cycle.

Control volume.

Normal velocity of the fluid in the y coordinate direction.
Valensi Number.



x Axial coordinate distance and direction.

y Normal coordinate distance and direction for Cartesian Coordinate,
system.

SUBSCRIPTS

c Cold end or east side.

h Based on hydraulic diameter or hot end reservoir.

i Instantaneous values.

in Inlet condition.

m Mean or averaged over the cross-section value.

max maximum value during the cycle.

fd based on fully developed flow conditions.

w At the wall.

SUPERSCRIPTS

* Guessed or lagged quantity.

GREEK SYMBOLS

W Angular frequency in rad/sec.

B Dynamic viscosity of the fluid.

Y =-(8Tfox)=[T,,,~T,,]/ L ;time averaged constant axial temperature-
gradient.

Kinematic viscosity of the fluid.
Density of the fluid.

o] Ratio of fluid to solid thermal diffusivity,
=(k/pCp)f/(k/pC,,)s :

K =kf/ k, ratio of fluid to solid thermal conductivity.

€ =b/ a,ratio of half solid to half fluid thickness.

A Non-dimensional Pressure gradient in the analytical solution,
= |3p/dx|a?fpuyv.

o Womerseley number used in the analytical solution,
=ayw/v .

n =y/ a, nondimensional normal direction.



CHAPTER 1

INTRODUCTION

The Stirling engine is a efficient power producing device based on the stirling
thermodynamic cycle. A few of its distinct features include high efficiency, very long
life, high reliability, and low noise. But, the most important feature which makes it a
strong candidate for a viable power source in the future is its ability to driven by virtually
any power source such as solar energy. Thus it is seen as a ideal power source for
remote applications such as space systems and remote terrestrial applications.

The Stirling Technology branch of NASA Lewis Research Center, Cleveland, have
been working on developing free-piston Stirling engines for both space and civil
applications (high and low power technology). Currently, research is going on to better
understand the thermodynamic losses in the NASA SPRE (Space Power Research
Engine), such that the efficiency can be maximized. A team from Cleveland State

University have been working on two dimensional modelling and analysis of the SPRE
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Figure 1.1 Cross sectional view of the NASA Stirling Space Power Research Engine.

ORIGINAL FAgE IS
OF POOR "'QéfLITY



3

heat exchangers to get a feel for the flow and heat transfer phenomenon occurring in the
heat exchangers. The thermal analysis of the heat exchangers done in this study is based
on the operating conditions of SPRE. Figure 1.1 shows a quarter sectional view of the
NASA’s SPRE and its various components.

Figure 1.2 is a schematic representation of the major components of the free-piston
Stirling showing the basic components and their relative locations. The basic power
output of the engine is based on the net work done orn the piston by the working fluid or
gas. The energy inputs include the heat input to the heater for heating the gas. This heat
input is reduced by the addition of the regenerator thus making it a highly efficient
thermodynamic cycle. The oscillatory motion is achieved by the pressure changes in the
piston and displacer gas-springs thereby shuttling the working fluid to and fro from the
compression to the expansion space. In the shuttling process the gas absorbs heat energy
from the heater part of which is absorbed by the regenerator when the gas is on its way
to the cooler. And when the gas flows from the cooler to the heater the regenerator
releases this stored energy thereby reducing the net heat input to the cycle or engine.

The location of the heat exchangers between the compression and expansion space
results in an oscillatory flow in the heat exchangers. Therefore the design of the heat
exchangers (heater, cooler or regenerator) needs to consider the effect of oscillatory flows
on the thermal losses. Due to lack of sufficient data and analysis the heat exchangers
designers still use unidirectional, steady state correlations for the friction factor and heat
transfer coefficient. Since the flow losses and thermal losses work against each other the

phenomenon has to be understood to optimize the engine working conditions.
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Some analytical solutions have been derived for the flow between constant area
ducts assuming fully developed flows. But the thermal analysis and analytical solution
has been restricted to the presence of a linear axial temperature gradient (Kurzweg,
1985a). No thorough analysis has been done on different temperature boundary

conditions as present in the Stirling engine heat exchangers.

1.1 Objectives of the research

The present study concerns itself with the time dependent flow and thermal fields
in the heat exchangers of the NASA SPRE, namely the, cooler, heater and regenerator.
The flow in all the components was assumed to be laminar and incompressible. For the
analysis effort was made to model the appropriate geometry for each of the heat
exchangers and choose an efficient and reliable numerical method to solve for the
governing equations needed for the analysis. Once the flow and thermal fields were
established, the study focussed on the behavior of the instantaneous friction factor and

heat transfer coefficient with the:

> Maximum Flow Reynolds Number (re__ )
» Valensi Number or dimensionless frequency (ya)
s Relative amplitude of fluid displacement (2 ).

The study was conducted over a wide range of the above mentioned parameters
in order to correctly assess the effect of these parameters on the flow and thermal field.

Also, different thermal boundary conditions namely, the conjugate heat transfer type,
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symmetric temperature inflow and asymmetric temperature inflow were also explored
under oscillating flow conditions. Special efforts were made to validate the numerical

method by comparing the predictions with existing analytical solutions.



CHAPTER 11

LITERATURE REVIEW

The aim of this chapter is to synopsize the past work done on oscillatory flows.
The survey discusses any analytical solutions and experimental data available on
oscillatory flows. Also numerical simulations that have been done on oscillatory flows
have been addressed and finally there is a discussion on further investigations that are
needed to understand the effects of oscillatory flows.

There are two kinds of unsteady (cyclic) flows that one can find in the literature,
pulsatile and oscillatory flows. In pulsatile flows the fluid is set to motion by a
sinusoidally varying pressure gradient or velocity which has a non zero mean, which
means in a complete cycle there exists a net mass transfer across any cross section normal
to the primary flow direction. The non zero mean also implies that the primary direction

of the inflow does not change in a cycle. Whereas in oscillatory flows the flow is driven
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by a harmonically varying pressure gradient or velocity that has a zero mean. Given the
definitions of these two types of unsteady flows one is easily led to conclude that
oscillatory flows are a special case of pulsatile flows when the driving pressure gradient
or velocity approaches zero mean, which is not true at least mathematically since zero
mean flow is a singularity point. This singularity makes the oscillatory flows phenomena
a very complex one, although qualitatively one can observe similar behavior between the
two kinds od flows. Since the present study concerns itself with only oscillatory flows
the review of pulsatile flows has been left out and interested readers can find an extensive
review of pulsatile flows in Kohler (1990) and Kwan (1992).

Before the survey is presented a brief description about the meaning of the term
"oscillatory flows" in the present context needs to be elaborated. One can find in the
literature about oscillatory flows in external flows (see Schlichting) where the flow pattern
around a harmonically oscillating body immersed in a fluid are discussed. That situation
is different from the one encountered in this study which is mainly concerned with
internal flows. The characteristic of oscillatory flows in a internal flow situation is that
the periodic driving force has a zero mean for a complete cycle, physically this means in
a whole cycle there is no net mass transfer across any cross section perpendicular to the
direction of the periodic input. Furthermore, in oscillatory flows because of the zero
mean the direction of the flow is actually reversed from one half cycle to the other half
cycle.

As the effects of oscillatory flows are completely different from unidirectional

flows which means the transition from laminar to turbulent oscillating flow is different.
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Many experimental studies have been done on the transition criterion from laminar to
turbulent flow in oscillatory flows and a comprehensive review can be found in Seume
and Simon (1986a). Only a brief review of the experimental work directly related to the

present study will be presented.
2.1 Analytical Solutions

One of the first analytical solution for the oscillatory flow problem was derived
by Stokes, who obtained the flow field about an infinite flat wall which executes a
sinusoidal motion ( See Schlichting ) in a stagnant fluid. The effect of the unsteady
motion on the flow field was recognized by the presence of what is now known as the
Stoke s layer. This layer is a small region close to the wall where the viscous diffusion
is concentrated and the region away from it is not effected at all by the motion of the
plate. Kurzweg and Chen (1988) did a heat transfer analysis on the above harmonically
oscillating plate when it is subjected to a constant axial temperature gradient.

Richardson (1928) in an acoustic experiment measured the velocity distributions
across an orifice of circular cross section and he found the peak velocity close to the wall
instead of the centerline of the orifice. This was theoretically verified by SexI(1930) and
experimentally corroborated by Richardson and Tyler (1929-30) for the flow produced by
the reciprocating motion of a piston. They had mistakenly characterized the velocity
peaks as "annular effect” due to the circular geometry. But it has been shown later these
velocity shoots near the wall are characteristic of oscillatory flows even in parallel plates
situation and not due to any particular geometry.

From the literature surveys it appears that the laminar fully developed
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oscillatory flows are fairly well documented. The fully developed solutions were derived
analytically by using parallel flow assumption and neglecting the initial conditions such
that the flow develops into periodically steady state. All the analytical work has been
done for constant area ducts and these are reviewed next including relevant numerical
simulations and experimental studies.
2.1.1 Two Dimensional Geometries

Uchida (1956) calculated the velocity profiles for laminar incompressible flow in
a circular tube subjected to a arbitrarily varying time dependent pressure gradient. He
linearized the Navier-Stokes equation by assuming parallel flow thereby dropping the
axial diffusion terms and was able to exactly solve the momentum equations by Fourier
decomposition of the time dependent pressure gradient term. His paper also appears to
be one of the first to distill out practically useful quantities as the wall shear stress.

Kurzweg (19852,1985b) was one of the first to extend the analysis to include heat
transfer for both parallel plate and circular geometry. It is appropriate to mention that all
the analytical heat transfer solutions were derived for a thick walled 2D geometry, that
is for the conjugated heat transfer problem. Kurzweg’s analysis was based on the earlier
works of Chatwin (1975), Watson(1983), Joshi et al. (1983) whom found the diffusion
of contaminants in gases were greatly enhanced when subjected to flow oscillations.
Drawing an analogy for the diffusion of heat Kurzweg wés able to arrive at a closed-form
solutions for the temperature distribution in the channel. His findings indicate that in
oscillatory flows if the fluid entering the channel has different specific enthalpy in one-

half period than the other half then the axial heat transfer is greatly enhanced due to fluid
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oscillations. This heat transfer is further augmented if the channel wall has a finite
thickness as it increases the heat storage/release capability of the wall. Kaviany (1990)
and Zhao Ling-de et al. (1991) did a similar analyses for circular tubes with similar
qualitative findings and in addition they also verified their theoretical predictions with
experiments. It should be mentioned here that this enhanced axial heat diffusion is an
undesirable effect for Stirling Engine application as the function of the regenerator (which
is sandwiched between the Heater and Cooler maintained at different temperatures) is to
minimize the axial transfer of heat from the Heater to Cooler and vice-versa.

Gideon (1986) using a mean parameter approach (average over Cross section)
technique was able to arrive at practically useful relationships such as friction factor and
heat transfer coefficient for the oscillating flow in a channel, but in general the results
were not in agreement with the exact solutions. Although the technique proved useful for
one dimensional modeling of the flow field in the Stirling Engine Heat Exchangers.

Ozawa and Kawamoto (1991) correlated this enhanced axial diffusion in terms of

an effective Nusselt Number for a range of Prandtl numbers ( pr) and Reynolds Number.

They observed that for higher py the lateral diffusion of heat and momentum penetrated

the same distance in other words the fluid behaved as though its Pr was unity for
sinusoidal motion of fluid in a pipe. Based on this observation they used a lumped-
parameter approach (two layered model) and arrived at a closed-form solution for the heat
transfer coefficient also they validated these correlations experimentally.

Kaviany (1986) extended the analytically investigations to include the effects of:

(i) viscous dissipation, (ii) channel spacing ( height of the channel ), and (iii) wall
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thickness (Solid Thickness).

The above analytical investigations for laminar oscillating flows in constant area
two dimensional ducts with parallel flow assumptions can be summarized as follows:

- Additional external work is needed to sustain this type of flow due to
higher friction losses as the wall shear stress is augmented.
- When the frequency of oscillation is low the fully developed velocity
profile approaches the parabolic shape found in steady, whereas at high
frequencies the lateral momentum diffusion is restricted to the Stoke’s
layer.
- Large quantities of heat can be transported across reservoirs. maintained
at different temperatures connected by a channel without convective
transport of mass (Oscillatory flows).
- There exists a particular frequency when the axial heat transport is
maximized.

2.2 Numerical Simulations

Ibrahim et al. (1989,1990) carried out numerical simulations assuming hydrody-
namically developed flow and confirmed the analytical findings. Further more the effect
of constant temperature boundary conditions on the heat transfer coefficient was also
presented. Devalba M. et al. (1991) also simulated the conjugate heat transfer problem
under oscillating flow conditions using a finite element code and confirmed the analytical
predictions.

Ahn (1990) and Kéhler (1990) conducted extensive numerical investigations under
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turbulent flow conditions utilizing various turbulence models. Their findings indicate that
the two equation turbulence models are inadequate to correctly capture the effects of
accelerating and decelerating flows. Further turbulent and transition studies in oscillating
flows are documented in Koehler’s doctoral thesis.

Recently Patankar and Oseid (1992) carried out a two dimensional heat transfer
analysis in a pipe under turbulent flow conditions. The boundary conditions were similar
to that of the Heater in the Stirling Engine and their study indicates the sensitivity of the
Nusselt number (lateral) to the phase shift between the wall heat flux and the bulk
temperature.

Hashim (1992) studied the effect of fluid oscillations on the heat transfer and skin
friction coefficient for various configurations of backward facing steps. Kwan (1992)
investigated the compressibilty effects in a channel for oscillating and pulsatile flows.
2.3 Experimental Studies

A large part of the experimental research has been devoted to study the stability
and transition mechanisms of oscillatory flows and can be found in Seume (1988).
Seume (1988) carried out a number of experimental runs for different operating
parameters in order to understand the transition mechanisms in oscillatory flows and

eventually came out with an envelope identifying the laminar and fully turbulent regimes

on a Re (Reynolds number based on the maximum velocity input and hydraulic

diameter) and pg (Valensi number) plot. Friedman (1991) later made detailed

3measurements at a particular operating point and with that database was able to extract

useful information about the effect of fluid oscillations on wall bounded flows.
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Yuan and Dybbs (1992) experimentally studied and simulated the regenerator of
a Stirling engine under oscillatory flow conditions. The study was mainly concentrated
on the effect of high frequency and high pressure on the heat transfer coefficient between
the working fluid and solid matrix in the regenerator. Their findings indicate oscillation
frequency effects both the temperature and heat transfer coefficient while the pressure
effects only the heat transfer coefficient. Furthermore the heat transfer coefficient is

enhanced significantly compared to that in unidirectional flows.
2.4 Summary

The survey presented above can be summarized as follows:

- Laminar fully developed flows seems to be well understood for
oscillatory flows. But the heat transfer analysis has been concentrated
mainly on the constant heat flux (boundary condition) problem.

- Currently there seems to no general consensus on the non dimensional
parameters to be used especially when it comes to the dimensionless
frequency. It has been referred to as Kinetic Reynolds number, Valensi
Number and Womersely number. But the trend among the Stirling engine
researchers seems to be adopt the definition of Valensi number.

- Because of the fluid oscillations the velocity profile and hence the
temperature profile take different shape as compared to unidirectional
flow except at low oscillation frequencies.

- In general all the physical quantities such as the pres-

sure,velocities, temperature etc. are out of phase relative to each
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significantly alter the friction factor and heat transfer coefficient.
- As far as laminar to turbulence transition is concerned the respective

regions are fairly well charted out and documented.
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CHAPTER III

MATHEMATICAL DESCRIPTION OF THE PHYSICAL PHENOMENON

In order to quantitatively predict the physical phenomena one needs to describe
it in mathematical terms and measurable physical quantities. Once a mathematical
description is established (usually in the form of governing equations for the dependent
variables) the solution of these equations are sought. An important intermediate step
between the description and solution is the nondimensionalization of the governing
equations. This not only simplifies the equation and in some instances even reduce the
number of dependent variables, but also filters the natural physical parameters effecting
the phenomena. The following sections concern themselves with the above issues with

particular emphasis on the fundamental assumptions and approximations.

3.1 Governing Equations

Most real life fluid flow phenomena are mathematically represented by the well
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known Navier-Stokes (N-S) equations which are based on the continuum hypothesis. The
N-S equations are a set of nonlinear partial differential equations arrived at by the
conservation of transport properties such as mass,momentum and energy for an
infinitesimal control volume. In vector notation they are as follows:

Conservation of mass,

op N R
= + V. =0 3.n
o (p)

Conservation of momentum,

p% + p(dV)d = -Vp + V1 +fg (3.2)

ot

Conservation of Energy in terms of the enthalpy,

p% + p(@*V)h = —V-q‘+[§aﬂ; +(E-V)p}+d> (3.3)

where

« : is the divergence operator

v : represents the gradient vector operator
p :isthe density

p ‘s the thermodynamic pressure

: stands for the velocity vector

=t
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: is the stress tensor

At

1

fg : stand for additional body forces

h : is the specific enthalpy of the fluid
G : is the heat flux vector

@ : is the dissipation function

The dissipation function is defined as,

@ = - 7 +def(if) (3.4)

O | =

Here def (ir) stands for the rate of deformation tensor and is defined as,

def(i0) = = | Vi + (Vid)" ) (3.5)

1
2

The superscript "*" denotes the transpose of a tensorial quantity. Some points to
note in the above equations are when the gradient operator ( ) acts on a vector quantity
it results in a tensorial quantity. The continuity and energy equations are scalar whereas
the conservation of momentum is a vector equation out of which follow three scalar
equations (assuming Euclidian space) depending upon the choice of coordinate system.
The above set of equations together with the boundary conditions are necessary to solve
the problem completely, but they are insufficient as there are more unknowns than the
number of equations. The following section wrestles with this problem by invoking some

fundamental assumptions and constitutive relations.

3.2 Constitutive Relations And Fundamental Assumptions
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The flow field is determined by the velocity 7 and the thermal field by the
temperature 7, therefore constitutive relations are used to reduce the equations (3.1)-(3.3)

in terms of these dependent variables. Firstly the stress tensor % is expressed in terms

of the velocity gradients by assuming the working fluid to be Newtonian which ajong

with the Stoke’s hypothesis is given by:

% = pdef(d) -%uI(V'ﬁ) (3.6)

Here " 1 " denotes the unit tensor which is like the Kronecker delta in cartesian

tensor notation. Substituting the definition of rate of deformation tensor def(i7) in the

stress tensor and then taking its divergence the conservation equation of momentum

reduces to what is normally called the Navier-Stokes equations:

P%ﬁw(ﬁ-v)a’ = -Vp + V-[P(VE')]+V'[u(Vﬁ)']+fg—%v[u(V.g)] (.7)

Since the present study is not concerned with buoyancy effects the body forces due

to gravity is assumed to be negligible and defining the pressure as:

P=p+ %p(v-a) (3.8)

equation (3.2) can be reformulated in the following form:

—_

p%t‘i + p(@*V)Z = ~VP + Ve[p(Vid)] + Ve[ (V)] (3.9)

As far as the conservation of energy equation (eq. 3.3) is concerned the first
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simplification is done by using the Fourier heat conduction law which gives a relationship

between the heat flux vector ( g ) and the temperature gradient is:

g=-k[V(T)] (3.10)
The specific enthalpy of the fluid p is changed to temperature by using the

thermodynamic identity:

Dh DT Dp
Z1 - ohe + (1 - ol o (3.1D
S YR Y (1-PD Dt
where 2() stands for the substantial derivative given by:
D:

D) . % + (V) () (3.12)
‘

Dt

and p denotes the bulk expansion coefficient ( or thermal expansion coefficient) defined

as:

1|{dp
b = __[_J (3.13)
p an

And it is zero for incompressible fluids and 1/7 for ideal gases. Substituting equations

(3.11) and (3.13) in the conservation of energy equation (3.3) and with some algebraic

manipulations it reduces to:

oT " _ op -
PGor +p ¢ (V)T = V+[k(T))] +BT[E+(u'V)p]+¢ (3.14)

For an ideal gas the energy equation takes the form of:
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T )
pcp% cpc,(ZV)T = Vo[kV(T)] +

_aagJ,(lj.V)pjl«Ld) (3.15)
t

Equations (3.1),(3.7) and (3.15) are sufficient to solve for the flow and thermal
field, but there are situations where they can be further simplified by the 7vpe of flow.
In this study two such classes of flows have been studied, namely incompressible flows
and thermally expandable flows. The necessary condition for the establishment of

incompressible flows is that the Mach Number is much less than one (M < I) and if the

temperature gradients are low in the domain considered the fluid properties ( p u, Bk, ¢, )
are constant. Under this situation the continuity and momentum equations are greatly
simplified with lot of terms dropping out such as gp /gt in eq. (3.1)and Ve[p(Vii)']

in eq. (3.9). An important implication of this is that the continuity and momentum
equations are decoupled from the energy equation, hence can be solved independently for
the velocity field without worrying about the thermal effects.

When there exists substantial temperature gradients in the domain at low Mach
numbers then the fluid properties are no longer constant and vary with temperature (only).
Such low speed compressible flows are called thermally expandable flows or anelastic
flows. It usually implies the density of the working fluid varies only as a result of
isobaric thermal expansion; in effect removing any acoustic phenomena from theoretical
considerations. Under this situation no terms in equations (3.1) and (3.7) drop out unlike
in the incompressible flow situation and further the energy equation now is coupled with
momentum equations now due to temperature dependent fluid properties.

If the Mach number is low ( M<1 ) an interesting formulation for the energy
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equation (eq. 3.15) results, the second term on the right hand side of eq. (3.15) and the
viscous dissipation function (@) becomes negligible and they drop out of the equation.

Then the energy equation is reduced to:

pcpa—T:J«pc (@V)T = Ve[kV(T)] (3.16)
ot P

The above equation states that the energy equation in low speed flows is strictly
a balance between the convective and diffusive (conduction) processes. It should be
noted that the above formulation is the same for both incompressible flow and anelastic
or thermallv expandable flow, but with the difference that in the former type of flow the
energy equation is uncoupled from the other the conservation equations, whereas in the
Jatter type of flow all the equations are coupled together and therefore must be solved
simultaneously. In the Stirling engine heat exchangers the flow speeds are very low
compared to the speed of sound (i.e low Mach number) and the above formulation for the
energy equation suffices.

Equations (3.1),(3.7) and (3.15) provide four equations for the four dependent
variables {7,v,p and T for a two dimensional cartesian or axisymmetric coordinate
system. These equations are listed in the Appendix A in one generalized formulation.
The complete set of partial differential equations as described in Appendix B together
with the boundary conditions are necessary and sufficient to describe the fluid flow and
heat transfer in oscillatory flows.  The basic assumptions used to derive the theoretical
equations are summarized as follows:

- The fluid is a continuum.
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- Newtonian Fluid.

- Stoke’s hypothesis.

- Low Mach number.

- No body forces or gravitational effects.

- Axisymmetric or two dimensional geometry.
- Fourier heat conduction law.

- No internal heat sources. - No radiation heat transfer.
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CHAPTER IV

NONDIMENSIONAL PARAMETERS AND BOUNDARY CONDITIONS

Nondimensionalization of the physical problem is one of the most important steps
in the solution process of the governing equations. The nondimensional variables which
arise from this process not only simplify the problem but also serve to reveal key physical
aspects of the phenomena. Also normalization of the physical problem provides the
natural scales for the problem as dictated by the boundary conditions, physical constants,
and geometry. A dimensional analysis of the governing equations has not been presented
in this report although the various nondimensional variables are described in detail along
with their physical significance.

As mentioned earlier (Chapter II) in this report there seems to be no consensus on
the standardization of the dimensionless frequency in oscillatory flows and this is highly
desirable in order to correctly interpret the results and for future reference. It is the aim

of this chapter to clearly group the nondimensional parameters for oscillatory flows found
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in the literature and physically interpret them so as to make a case for consistent usage

in the future.

4.1 Valensi Number ()

There are the three different nomenclatures one comes across in the literature for
the dimensionless frequency in oscillatory flows. This nondimensional variable is the
natural outcome of oscillatory flows equations due to the presence of the unsteady term
in the Navier-Stokes equations. To be precise, it weighs the strength of the time
derivative term in the governing equations just as the Reynolds numbers weighs the
relative strengths of the convection and diffusion terms. The three definitions of the
above variable are as follows:-

Valensi number,

h
w (—
4.1)
Va = ____2——
v
Kinetic Reynolds number,
)2
w . (—
4.2)
Re, - — 2
v
Womersely number,
D
2 v
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It should be mentioned that Kurzweg (1985a) with whose results the present

numerical simulations are compared with has used D,/4 in the definition of Womersely

number instead of D,/2 in his investigations of oscillatory flows in a parallel plate
channel.
From the above definitions of the Valensi number (Vg) and Kinetic Reynolds

number ( Re ) it is shown that they are the same but differ in the vocabulary. The

motivation to define it as the Kinetic Reynolds number ( Re ) can be traced to its
@

similarity in structure with the well known definition of Reynolds number. The Valensi

number can be physically interpreted as the ratio of viscous diffusion time scale

( D,f/llv ) to the oscillation period ( 1/ ). When the Vg is low implies 1/ -ee O the

viscous diffusion is fast relative to the oscillation frequency and the velocity profile
approaches the familiar parabolic shape as seen in steady flows. For higher g due to

high frequency the viscous effects do not have the time to diffuse across the duct before
the convected fluid arrives, hence instead of the parabolic profile one sees the presence

of a small Stokes layer near the wall where the viscous effects are concentrated.

The Womersely number (g on the other hand gives a very geometrical

interpretation, it is the ratio of the width of the duct ( D,/2 ) to the viscous penetration

dcpth \/v/w .
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Despite the various meaningful definitions for the dimensional frequency, the
definition of Valensi Number ( g) has been adopted by the Stirling Engine researchers

and this definition will be used throughout this report.

4.2 Maximum Reynolds Number ( Remu)

Maximum Reynolds Number is the second similarity parameter or the
dimensionless variable which arises out the normalization of the governing equations. For

oscillating flows it is defined as follows:
Re - P Y maxn 4.4)

The velocity is scaled by the maximum velocity amplitude ( U, ) instead of the
mean velocity since the mean velocity is zero in oscillatory flows.
The Maximum Reynolds Number ( Rem) and Valensi Number ( /4) together make

up the dynamic similarity parameters for two dimensional oscillatory flows.
4.3 Geometric Similarity Parameters

This similarity parameters arise when the length scales are normalized as dictated

by the geometry of the problem. Since this work concerns itself with plane flows or two

dimensional geometries. The axial length () of the Heat Exchangers are normalized

with the Hydraulic diameter ( D, Therefore the dimensionless axial length which reveals

itself after the normalization is [/ D, -
T
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4.4 Derived Similarity Or Nondimensional Parameters
In oscillatory flows it is not unusual to find in the literature additional

nondimensional variables, derived from the fundamental variables described above.

4.4.1 Relative Amplitude of Fluid Displacement ( Ar)

Relative amplitude of fluid displacement (4,) is one such derived parameter and

it is defined as the maximum axial fluid displacement during one cycle divided by the
length of the duct. Essentially, it states how far the fluid is pushed into the duct
compared to the axial length of the duct for one oscillation period (if the fluid oscillated

inviscidly).

A = 2 Xooax 4.5)

g L

Under the plug flow assumption ( uniform velocity across the cross section of the
duct), the A values indicate three different physical situations for a cycle:
A < 1 Some fluid does not leave the heat exchanger referred to as

"dead Volume" by some researchers.

A =1 All the fluid initially in the heat exchanger moves the length

of the channel in a oscillation cycle.

A4 >1 All of the fluid initially contained in the channel, at any time

during the cycle, is outside of the channel at some other

time during the cycle.
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From a different perspective A indicates the volume of fluid displaced in one-half

cycle divided by the total volume of fluid contained in the duct. Since it is an geometric
similarity parameter it plays an important role in characterizing entrance effects.
4.4.2 Strouhal Number ( Sz )

Strouhal number is another derived parameter widely used in external flows as a

nondimensional parameter for the frequency of vortex shedding. Analogously for internal

oscillatory flows the frequency of fluid oscillation ® is scaled by the U,/D, to arrive

at Strouhal number ( Sy ):

(4.0)

By a little algebraic manipulations it can be shown that the Strouhal number is not an

independent dimensionless parameter and relates the Valensi number ( 1/g) and Maximum

Reynolds number ( Rem) by the equation,

Str = 4.7)

Earlier Stirling Engine Heat exchangers were designed and operated based on the g

and Re_,. values.



4.5 Boundary Conditions For The Governing Equations

The governing equations presented above mathematically describe a whole class
of fluid flow problems, the way problems are differentiated from one another are by the
application of boundary conditions. Since the equations are solved in a finite domain the
boundary conditions for each of dependent variable needs to be specified along the
boundaries of the domain. For the present situation four different types of boundary
conditions were used to close the problem. All the boundary conditions for the particular

boundary is based on the Figure 4.1.

4.5.1 Solid Walls

Along the walls by virtue of no-slip, the fluid velocity is zero assuming the walls
are impermeable. For the energy equation the walls can either be maintained at constant
temperature or be a source of constant heat flux. Mathematically this can be expressed

as,

aT
U Vear=0, T=T,; OR -k_a_’;)wall:QwaIJ (4.8)

wall ~ T

where the partial derivative w.r.t n implies gradient normal to the wall.

4.5.2 Symmetry Planes
On symmetry planes or axis of symmetry the normal gradient of the tangential

velocity and the normal velocity are zero as far as the momentum equations are
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concerned. By symmetry the normal gradient of the temperature is also zero for the
energy equation, physically this implies the symmetry plane behaves as an adiabatic wall.

These can be formulated for the plane shown in figure 4.1 as:

.9 4.9)
y oy

. 4.,5.3 Inlet Plane

On the inlet planes mathematically the boundary conditions are of Dirichlet type

i.e. values of the dependent variables are specified. Thus

U, =U_, Sin(wt)

V. =0 4.10)

It should be noted that the above equations are based on the inlet plane as shown
in Fig. 4.1. The U velocity is time dependent and varying sinusoidally whereas the

temperature is fixed w.r.t time.

4.5.4 Outlet Plane

At the outlet plane one does not know the boundary conditions apriori the normal
practice is to keep the domain long enough such that the diffusive fluxes are negligible
normal to the plane. Additional physical constraint for the momentum equations is

derived by observing that for incompressible flows the mass fluxes are conserved. The
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mathe matical formulation for the boundary conditions are:
U _ov_of _, @.11)
ox oOx Ox
For oscillating flows the inlet and outlet plane are reversed after each half cycle
due to the zero mean flow restriction. For instance if the cycle begins with the flow

entering from the East side after half period the flow enters from the west side.

4.5.5 Solid-Fluid Interface

This boundary condition is needed in the conjugate heat transfer problem, where
there is an interaction between the fluid within the channel and the surrounding solid
region. At a solid-fluid interface the heat flux across the interface is conserved by energy
conservation principle and the temperature is continuous. These two boundary conditions
have been implicitly implemented in the code since the solid-fluid domain has been

solved together.



CHAPTER V

NUMERICAL SOLUTION TECHNIQUE

The governing partial differential equations (PDEs) which are generally
elliptic in nature, are not tractable to analytical solving procedures.They are numerically
integrated by one of the many discretization procedures. In this chapter,the solution
methodology is discussed.

Currently, there are numerous methods and ways to solve the partial
differential equations arising in fluid mechanics, some of the existing popular and fairly
standard methods are based on one of the following discretization schemes:

i) Finite Volume Methods (FVM)

ii) Finite Element Methods (FEM)

iii) Finite Difference Methods (FDM)

The underlying principle behind all these methods are one and the same,

which is dividing the domain into smaller subdomains and thereby reduce the partial
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differential equations into a set of linearized algebraic equations. The differences among
the methods arise from the way these algebraic equations are arrived at from the original
PDEs. Since no single method has till now been proven to be superior to the other, the
finite volume method (FVM) has been chosen in this study. One of the distinct
advantages of the finite volume method is that it lends itself naturally to the PDEs arising
in fluid mechanics problems.

The code developed to solve the governing equations is based on the
research code called C.A.S.T (Computer Aided Simulation of Turbulent Flows) developed
by Peric and Scheuerer ( See Peric et al. ). The original code limited in its ability to
handle variety of thermal and time dependent boundary conditions has been broadened
to include these type of flows. Further the numerical formulation of the energy equation
has been revised to handle conjugate heat transfer problem such as that occurring in the
regenerator of the Stirling engine. The objective of the following description is (i) to
briefly describe the discretization technique (ii) solution technique employed to solve the
algebraic equations and (iii) discuss the convergence criterion employed.

5.1 Principle Of Finite Volume Method

The finite volume method in general is based on the conservative property
of the partial differential equations (PDEs) since the equations which themselves are
derived from the conservation of certain physical quantities. This important attribute of
the equations makes it possible to collapse all the individual equations into a generalized

transport equation, thus facilitating one common algorithm for all the PDEs. Therefore

for any generalized scalar variable ¢ the transport equation can be written as:
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Here the value of , determines the type of axes system used, when »= 0

then the transport equation reduces to the cartesian coordinate system with the

independent variable , being changed to the more familiar y- And, when p= I the

equation represents the transport equation for a axisymmetric coordinate system. All the

individual differential equations for each conservation equation (e.g. mass,momentum) can

be recovered from equation (5.1) by choosing appropriate physical quantity for ¢ T, and S

which are given in Table 5.1 below:

Table 5.1: Interpretation of ¢ T, and Se in the transport eq. (5.1)

Equation ¢ Se
Continuity 1 0
oP 9, 90U, 19 20V
et — — ——— —
x-Momentum U Ox ax(” ox )* rh ax(“r ax)
r-Momentum
Vv 6P od, oU V
- 2wy L8 2
or ox Odr ,nor or r?

Energy CT 0




37

The general discretizing procedure for the transport equation given in eq.
(5.1) 15 as follows. In the first step, the computational domain is divided into small
rectangular contro]l volumes. The grid points where the dependent variables are solved
for lie at the geometric centre of the control volume. Then the transport equation 5.1 is
integrated over each control volume. By applying Gauss's theorem to the integral
equation results in a integro-differential equation. Physically the integro-differential
equation is a relation between the net increase of the considered quantity per unit time,
the total net convective and diffusive fluxes across the control volume boundaries and the
source (or sink) terms within the control volume. This integro-differential equation is
then discretized with some assumptions and linearization to arrive at the linear algebraic
equation for the control volume. If the above process is repeated for all the control
volumes one arrives at a set of linear algebraic equations for the transport equation 5.1.
The natural appearance of the fluxes at the control volume faces makes the whole scheme
globally conservative. These set of equations are then solved to give the values of the
considered quantity at the grid point locations. Special coupling algorithm is used to link
all the sets of algebraic equations for a given physical quantity. A brief outline of the
above described is as follows for a detailed explanation the reader is referred to Peri¢ and
Scheuerer (1989).

The outline will be presented with reference to the Cartesian coordinate

system, which means in the transport equation (5.1) ;=0 and ; =+ .
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5.2 Control Volume Variable Storage

Figure 5.1 show a part of the integration domain which is subdivided into
small rectangular control volumes by the intersection of y and v lines. The code used
in this study uses the so called co-located variable grid arrangement. In the co-located
variable arrangement all the dependent variables ( [/, 1 ,T;...etc) are stored in the same

location as shown in figure 5.2. Patankar (1980) had shown how the co-located variable
arrangement gives rise to oscillatory (checkerboard) solutions but a special interpolation
procedure is used in the present code to determine the cell-face velocities (the main
reason for unphysical solutions) to suppress the checkerboard solution. In the discretiza-
tion scheme to be discussed next, a typical control volume (CV) containing the grid point
P (see figure 5.2) is integrated. All the surrounding grid points are identified by their
sense of direction relative to the grid point P, such as the grid point E located to the right
of point P. All the quantities calculated at the CV faces are denoted by lower case

subscripts such as "e" for the quantity calculated at the east side cell face. The open

arrows denote the mass fluxes at the CV faces in the xy and y directions.

5.3 Integro-Differential Equation
The first step in the discretization of the transport equation (eq. 5.1) is to
integrate it over a control volume ( §, ) to yield:
[, a(p¢)dv+f (= (p Ub-T, ‘9“’) . a (VT a<”)]dv [, 5,3y (52

Where
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Bv = dxby (5.3)

is the two dimensional "volume" element in the cartesian coordinate system. The second
term in eq. (5.2) is the volume integral over the divergence of the convective and
diffusive fluxes. Applying Gauss’s divergence theorem it is transformed into a surface

integral resulting in:

apd) ;. [ . N 3¢ ,
fo, o520 + [T U-T,ZD, - (0 US-T, 2D, 1d)

+ [Teve-r, 22 ad’ ) - (P V¢-F¢%)S]dx (5.4)

= fav[&b 1dv

A closer look at equation (5.4) reveals that it is nothing but a balance between the
rate of accumulation of ¢ within the CV and the net transport of ¢ by convection and
diffusion across the CV faces plus the source or sink terms within the CV. Further the

€q. (5.4) is still exact in the sense no approximations have yet been introduced. The next
step is the discretization of the eq. (5.4) thus introducing the approximations.
5.4 Discretization Scheme

The discretization of eq. (5.4) is done in two steps. In the first step the surface
and volume integrals appearing in are approximated by utilizing the mean value theorem.
The linearization of the coefficient are also done in this step. In the second step the mean

values of various transport quantities arrived at in the first step are discretized and related
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to the CV grid points.

5.4.1 First Level Approximations
The approximations for the integrals appearing in eq. (5.4) using the mean value

theorem involves two crucial assumptions, viz:

r the fluxes through the CV faces are approximated as the product of the mean flux
per unit area going through the centre of the particular CV face and the CV face
area.

» the integrals involving the time derivative and the source terms are approximated
as the product of the mean value of the integrand associated with the CV centre
and the CV.

> the coefficients are also linearized in this step. All the mass fluxes and the
diffusivities are evaluated with values from previous iteration.

Using the above three assumptions eq. (5.4) can be written as:

Ap’d) . . O . . (O
AP D)y T, () 8y - T, (2®) 8y
at v+ ["1 x,ed)a ¢,e( Ax )c y ] [," x,w¢)w b,w( Ox )w y ]

+ [m '_‘,,,cbn—I"‘,,n(%)nbx] - [m ‘ud)s-l“w(—g%)sbx] (5.5)
= S¢6v
Where
m.=pU®y) ; m =pV(d) (5.6)

are the mass fluxes across the control volume faces in the yx and y directions
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respectively. Also the starred ("*") variables indicate values obtained from previous
iteration.

The second step of approximations involves the discretization of the convective
fluxes, diffusive fluxes, source terms and time derivative.
5.4.2 Discretization of Convective Fluxes

This step involves the discretization of the convective fluxes or the mass fluxes

found in eq. (5.5). Special care has to be taken to find the values of the dependent

variables at the CV face (e.g. ¢, etc) with respect to the values at the grid nodes ( i.e

the centre of the CV). The code used in this study uses a flux-blending approach or a
hybrid method to evaluate the variable at CV faces which is linear combination of two
methods with different order of accuracy, namely

> the first-order Upwind Differencing Scheme (UDS), and

g the second-order Central Differencing Scheme (CDS).

A pure CDS cannot be used in flow situations where there is a flow reversal and
recirculation as it can give rise to unphysical solutions (see Patankar, 1980), whereas UDS
albeit Jower in accuracy ensures a diagonally dominant, positive definite coefficient
matrix. This is achieved in UDS by replacing the cell face value by the grid point or
node value closest to the CV face depending on the flow direction, unlike in CDS where
the cell face value is evaluated from a linear interpolation of adjacent grid point values.
Using the hybrid approach the value of the dependent variable at the east cell face can

be written as:
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o, = d)euus + Y(q)ecns_cbeuns)v' (5.7)

Here y weighs the contributions of UDS and CDS and is O for a pure UDS and 1 for
pure CDS. The "*" implies the values evaluated at a previous iteration level thus making
it a "deferred correction” approach. The deferred correction ensures the diagonal
dominance required for the solution of the algebraic equations even for a pure CDS. In
the present study a pure UDS (y = 0) was used for all the cases investigated.
5.4.3 Discretization of the Diffusive fluxes

The diffusive fluxes are the first derivative terms (gradient terms) in eq. (5.5)

multiplied by the diffusivity (1"4)). A second order central difference discretization

method is used to evaluate these terms and a typical form of it for the gradient at the

"east”" cell face would be:

¢E—¢p
Ax

-4

(5.8)

9, .
S

It is important to note the ¢ are evaluated at the grid node value (upper case). Similar

formulations can be derived for the gradients at other cell faces.
5.4.4 Discretization of the Source Terms
The source terms appearing in the right hand side of eq. (5.5) is replaced by the

value obtained at the centre of control volume (or grid node P, see fig. 5.2), i.e.:

S48V = 5, 0v (5.9)

In case of non-linear special care has to be taken to linearize the source terms such that
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only the positive contributions are added to the algebraic equation. For further details
regarding this see Peri¢ and Scheuerer(1989).
5.4.5 Discretization of the Time Derivative

Two basic assumptions are utilized to discretize the time derivative term in eq.

(5.5). First, CV mean value of ¢ is approximated as the grid node value $p and

secondly, the value of dependent variable is assumed to be varying linearly with time.

Utilizing these two assumptions one gets:

dpd) _ Pdr - P°pd’s (5.10)
ot t - ¢°

The superscripts "0" stands for the values obtained from previous time step.

Since all the space derivatives and source terms are evaluated at the new or
current time level it makes the whole discretizing scheme fully implicit. In other words
there is no restriction on the time-step chosen.

5.4.6 The Final Form of the Discretization Equation
After substituting for the approximations described in Sections 5.4.1-5.4.6 into the

eq. (5.5) one gets the final discretization equation for grid node P as:

ad, = aydy, + aa; + ads + ad, + b, (5.11)
A look at eq. (5.11) reveals that the value of the dependent variable at the grid node P

" n

is dependent on the surrounding grid nodes. The coefficients "g" contain the

contributions from the convective and diffusive fluxes and " by " contains the source term.
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The detailed formulations of the coefficients can be found in Peri¢ and Scheuerer (1989).
5.5 Solution Algorithm

The governing equations presented in Chapter I (eqs. 3.1-3.4) are all coupled
together for a general fluid flow problem. For incompressible low speed flows the
momentum and continuity equations are strongly coupled together. Hence special
algorithms need to be used to solve for the dependent variables, in the numerical code
used in the present study the well known and tested SIMPLE algorithm (Semi-Implicit
Method for Pressure-Linked Equations) has been implemented. A brief outline of the
SIMPLE algorithm will be presented next. For unsteady flows the solution algorithm is
applied to each time step.

5.5.1 SIMPLE algorithm

The SIMPLE algorithm is sequential step by step solution procedure where each
of the governing equations (e.g. continuity,x-momentum, etc.) are solved one after another
and then coupled together by physically derived algebraic relations. The algorithm
consists of the following steps:

0) First step consists of initialization of all the dependent variables such that the
finite volume coefficients (the fluxes) and the pressure difference (source term)
in the momentum equations can be evaluated. Any sensible initial guess value can
be used, for unsteady flows such as the present problem values from previous
time step can be used as a good initial estimate.

1) Next the finite volume coefficients of the x-momentum equations are assembled.

Then the resulting set of linear algebraic equations are solved to yield the axial
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velocity p*. Since the resulting new velocity is only approximate (based on

initial guessed pressure), the algebraic equations have been solved by an iterative
solution algorithm instead of direct matrix inversion algorithm. These iterations
are called "inner" iterations and the number of these "inner" iterations can be user

controlled.

2) The same procedure (Step 1) is used to obtain the normal velocity y* from the
y-momentum equation.

3) Since the initial pressure is guessed, the velocities gy* and p* will not satisfy

the continuity equation even though they will satisfy the momentum equations.
In this step a pressure correction equation is derived (see Appendix B) to estimate
the pressure and its associated velocity and mass fluxes from the continuity and
momentum equations. These corrected velocities will then satisfy the continuity

equation but will throw the momentum equations out of balance in the process.

4) Once the velocities satisfying the continuity equations are found all the scalar
transport equations are solved in the present case the energy equation. The
energy equation is solved in the same process as described in Step 1. As the
energy equation is decoupled only one "inner" iteration is performed, although t

could have been solved after the true velocities have been found.

5) The residual norms are computed for all the conservation equations which in an

ideal case of correct solution should go to zero. These residual norms are
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normalized by appropriate reference quantities. If any of the normalized residual
norms is greater than the user specified convergence criterion the algorithm
returns to Step | and uses the current values to evaluate the new finite volume
coefficients.

6) If all the normalized residuals norms are smaller than the specified convergence
criterion than convergence is declared. For unsteady problems, the time counter
is incremented by the time step size ( §¢) and the algorithm return to Step O with
the initial guesses for the dependent variables taken from the previous time step.
In the present study the convergence criterion was choosen to be 0.1% of the

reference residual norms. Further, special care has to be taken for oscillatoryvﬂows when
evaluating the reference mass flux for the residual normalization(Step 6). Since at the
instant of flow reversal the mean flow velocity is zero. In these situations the code has

been modified to use the reference mass flux based on the maximum inlet velocity

(v )

5.6 Code Modifications For Oscillating Flows

The computer code CAST has been modified to account for the cyclical nature of
the oscillatory flows and the switch in the boundary conditions. Although care has been
taken to retain the structure of the code and utilize the Vectorizing capabilities of the
Cray YMP supercomputer. Briefly, few of the major changes include:

» At flow reversal (0°,180°,360" the inlet and exit boundary planes are switched o
account for the zero mean flow situation.

» A new energy equation (assembly & evaluation of the FV coefficients) routine has
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been written along with the proper boundary condition to solve for the heat
transfer problem.

s The code has also been modified to solve the conjugate heat transfer. The change
has been made such that the numerical code is transparent to the presence of solid
and fluid region (i.e. the energy equations is solved together for the solid and
fluid regions. This has been achieved through modifications of the diffusive
coefficients and source terms details of which can be found in the book by
Patankar (1980).

In addition to these, minor modifications have been done to accelerate the

convergence of the equations.
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CHAPTER VI

OPERATING CONDITIONS AND GEOMETRIC MODELING

This chapter concerns itself with the nondimensional parameters conditions under
which the Stirling engine heat exchangers operates. This chapter also addresses the way
the heat exchangers are modelled numerically such that the geometry closely
approximates to the one found in the engine. The operating parameters are given
specifically for the NASA SPRE (Space Power Research Enginc), the object of present
study. Figure 1.2 showed how the heat exchangers in the SPRE are located, the cooler
starts from the compression space and opens into the regencrator which in turn is

connected to the heater and which opens into the expansion space.

6.1 Operating conditions

The parameters under which the SPRE operates were taken from the one

dimensional code GLIMPS, which simulates a Stirling cycle engine and has been used

ORIGINAL PAGE IS
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extensively by researchers at NASA. The numerical simulation of the heat exchangers
used in the present study were based on GLIMPS and these are listed below in columar

format for the Regenerator, Cooler and Heater respectively.

Regenerator
PARAMETER GLIMPS CODE PRESENT SIUDY
Hyd. Diameter D,, (m) 0.133 3x10* 4::_:(_);3;) 2
Wire Diameter D,, (m) 2.54x10° 5.0x10"
Matrix Length L, A (m) 24.63x10° 12.00
Mean Pressure (Mpa) 15 n/a
Gas Temp. (Hot side) (K) 617.2+(12.6) Sin(wt+2.07) 274
Gas Temp. (Cold side) (4) 345.1+(2.10) Sin(wt+2.32) 273
Valensi Number (Va) 1.5 2.5,400

—

Re .. 265 @
A, 0.478 0.25

Cooler
PARAMETER GLIMPS CODE PRESENT STUDY
Hyd. Diameter D,, (m) 1.524x10° 5.0x10*
Tube Length I, (m) 95.25x10" 6.0
Number of Tubes P 1584 1
Mean Pressure (M’a) 15 n/a

ORIGINAL. PARE IS
OF POCR QUALITY



Gas Temp. (Hot side) ¢'K)
Gas Temp. (Cold side) (°K)
Wall Temp. )

Valensi Number (Va)

Heater

PARAMETER

Hyd. Diameter D,, (m)
Tube Length L, (m)
Number of Tubes

Mean Pressure (M’a)

Gas Temp. (Hot side) (4(
Gas Temp. (Cold side) (é)
Wall Temp. ('K)

Valensi Number ( Va)

Re

mazl

52

345.1+@2.1) sin{wt-2.31) 340,350
332.7+(129)Sin(wt+0.13) 330,340 &

324.3+7.5x10°sin(wt+0.77) 330,340

350

300000 JiOﬂOi),f*(&Q_&
_ 860000

0.686 0.714

GLIMPS CODE PRESENT STUDY

1.27x10™ 5.0x10~

90.17x10” 7.0

1632 I

15 n/a

625.8+(29.1) Sin(wt+0.33) 630,620

617.2+(12.6) Sin(wt+2.07) 610,620

3243+1.4x10%sin(wt+0.76) 650

88 44,88 & 176
16500 8250, 16500

& 33000
0.686 0.714

ORIGINAL PARE IS
OF POOR QUALITY
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The regenerator parameters used in this study are diffrent from that predicted by
the GLIMPS code since the regenrator was modelled as a seperate entity. Whereas the
operating conditions for the regenerator got from GLIMPS is based on a complete
simulation of the Stirling engine i.e. including the cooler and heater. Also the wall

temperature fluctuations were assumed to be zero in the present study as they are small.

Working Fluid

The working fluid used in the numerical simulations was helium which is the same
as used in the SPRE. The following properties of helium at standar atmospheric pressure

were used for all the numerical simulations conducted in this study:

Density (kg/m’) 0.200
Dynamic Viscosity (N.s/m’), 2.83x10°
Specific Heat, C, (J.kg"/é h 5200.00
Thermal Conductivity, k,(W.m".'K) 0.20439
Prandtl Number ( Pr) 0.72

Regenerator Metal

The regenerator metal used in the conjugate heat transfer problem was chosen to
be aluminum and the following properties at 20°C were used in this study:

Density (kg/m’) 2707.0

204

Specific Heat, ¢, (J.kg‘IA“) /{ 896.00
{)

Thermal Conductivity, k,(W.m"

A% AR s
omiGiAL, PAEE 13
OF POOR"“QUN.HY
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Table 6.1: Test cases investigated in the present study for fluid flow analysis.

TEST Re,,, va L/D, A,

CASES
R, 75 2.5 60 0.250
R, 12000 400 60 025
o 15000 175 60 0.714
C, 30000 350 60 0.714
C, 60000 700 60 0.714
C, 10000 200 70 0.357
C, 20000 400 70 0.357
Cq 40000 800 70 0.357
H, 8250 44 70 1.340
H, 16500 88 70 1.340
H, 33500 176 70 1.340
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Figure 6.1.  Envelope in which different Stirling Engines operate, together with: i)
Criterion for transition from laminar to turbulent flow, ii) Different test
cases studied in the present work.
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Table 6.1 lists all the cases studied in the present work. All the cooler cases begin
with the letter "C", the heater with "H" and the regenerator with "R" respectively. Figure

0.2 shows these cases ona Re,,, and Va plot with various transition criterion found in

X
the literature for laminar to turbulent transition. As it can be seen the SPRE heater and
cooler heat exchangers operate on the transition regime. But a laminar analyis is still

pertinent since the flow inside the heat exchangers is part laminar and part turbulent

within an oscillation cycle.
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6.2 Geometric Mod/lin

Figure 1.2 showed an &gnceptual geometry of the SPRE, the heater and cooler
components consists of bundles of'(ubes and the regenerator is a foil type matrix. The

heater and cooler are modeled as circular tube with a finite length. Only one tube for

each component was considered since a throtigh analysis involving all the tubes is beyond

the scope of the present study. The regeneratox, is one of the most important in the
Stirling engine and is also one of the most difficult toxmodel since it is a matrix. In the
present study this is resolved by modeling it as a parallel-}ifs channel with geometric

similarity i.e. the matrix is replaced by a solid plates of finite\thickness with the same

hydraulic diameter. In summary :

e\

!

Heat Exchanger Geometry Mod"(ll;d
Regenerator Parallel-Plates Channel
Heater Circuler Tube

Cooler Circular Tube

ORIGINAL PARE 1S
OF POOR QUALITY
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CHAPTER VII

OSCILLATING FLUID FLOW ANALYSIS

In this chapter results for the effect of flow oscillations on the velocity field and
associated friction losses are presented and discussed. The investigation has been carried
out for a wide range of nondimensional parameters with an eye on the Stirling engine
heat exchangers operating conditions. The cases investigated and their operating
parameters are given in Table 6.1 (Chapter VI).

Any numerical discretization method gives rise to so called truncation and
discretization errors. Hence, code validation is an important element in any numerical
simulation, in the present study the results of the numerical simulations have been
compared with existing analytical and experimental efforts. The first two sections

(7.1,7.2) deal with this aspect concurrently with the fluid flow analvsis.
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7.1 Fluid Flow in Parallel-Plates Channel and Code Validation

Since the regenerator is modelled as a parallel-plates channel, the fluid flow results
for this component are presented next.

7.1.1 Analytical Solution For The Velocity

Kurzweg (1985a) analytically solved the N-S equations governing the oscillatory
for flow between two-parallel-plates channel. The geometry investigated is shown in
Figure 7.1, where an array of parallel-plates channel are connected at ends, to reservoirs
maintained at different temperatures (only part of the geometry as simulated numerically
is shown). The flow is set to motion inside the channel by a sinusoidally varying
pressure gradient and a temperature difference between the end reservoirs ensures that a
constant axial linear temperature gradient is maintained along the channel throughout the
cycle. Also, he assumed the walls of the channel to be thick thus signifying a conjugate
heat transfer problem or a special case of the generalized constant heat flux thin wall
problem.

The channels were assumed to be long such that the fluid flow is "fully
developed” or to be more precise, the axial velocity profile is constant along the channel.
Under this assumption the momentum equations simplify considerably — in fact, only the
axial momentum remains — and are tractable to analytical solution techniques. By
neglecting the initial conditions he solved for the quasi-steady axial velocity distributions,
i.e, the velocity distributions does not change from one cycle to another cycle at any

instant in the cycle and is given by:

Where j = /=T is the imaginary unit, & denotes the real part of a complex
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- _ [ A cosh(/ian) P -
Un.t) =U, £(n) etot=0u, &{ 2% [1- ] e (7.1
o 20 ° {az cosh(/Ia) }

quantity, is an arbitrary velocity scale, n =y / a the normalized coordinate distance
[ ] normal to the flow direction, ¢ the time, g =a/w /v the Womersley number

or the nondimensional frequency (note va=4 a2 ), and A = |dp / 0x |, @°/ PUpV the
nondimensional amplitude of the imposed sinusoidal pressure gradient. Once the velocity
distribution is established practically useful quantities such as the wall shear stress can
now be established. The temperature profile is discussed in the heat transfer section to
be presented later in this report.
7.1.2 Reformulation of The Analytical Solution

In order to compare the velocity profiles by the numerical solutions with
the analytical solution presented above special attention has to be given to carefully match
the boundary conditions. A direct comparison with the above solution could not be made
because of the different boundary conditions and the two-dimensionality of the numerical
simulations. In the derivation of the analytical solution the paralle!-plates channel was
assumed to be infinetly long (thus rendering it a one dimensional) and more importantly
the flow was established by applying a sinusoidally varying pressure gradient
[8p / 3x = |0D / 0x |,y COS (@ t y]. But in the numerical solution the domain is two
dimensional and finite in length with the flow being established by a sinusoidally varying
velocity [ g, = U, Sin(wt) ] at the inlet, the reason for choosing a velocity boundary
condition instead of a sinusoidally varying pressure boundary condition was the ease of

implementation numerically. Hence the analytical solution for a periodic velocity
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boundary condition has to be derived first and the proper axial location chosen. The axial
center of the channel was chosen for comparing with the theory since it is far away from
both the ends the effects of finite channel length can be assumed to be negligible at this
location. The solution for the velocity profile [Eq. (7.1)]. essentially, stays the same but
a phése difference has to be added to account for the velocity bounadary condition. The
following equations outline the procedure to derive the phase difference ¢  to be added
in order to correspond to the numerical simulations:

Given,
Uy, = Upax Sin (o t) (7.2)
Now defining the {7 given in Eq. (7.1) to be the same as (maximum inlet velocity),

the reference parameter used in numerical solution, or:

Uy, = U, (7.3)

max

and with little algebraic manipulations the nondimensional pressure gradient j in Eq. (7.1)

can now be related to the known numerical parameter o (or ya ) by the expression:

2
A= S (7.4)
10l
Here § is a complex quantity and the double vertical lines ( | || ) stands for the

absolute value or modulus of the complex quantity. Its given by the expression,

5,=1- tanhi /ia) (7.5)
Jia

Also the phase difference ¢ to be added to the analytical solution for a sinusoidally



varying velocity input is given by:

¢U=90 + tan™? (7 .6)

R(5,)

u

suau,»}

Where symbols ® and g denote the real and imaginary parts of a complex number.

Finally, the velocity distribution corresponding the boundary condition given by Eq. (7.2)

is given by:
, —
Ui, £) = U £, (n) @54 =y XRJ i [, . cosh(/Ten) ]ei(wc‘d-u\} (7.7)
N ™ N ™ R0l cosh(/Ia)

Where £ (n) is a complex function varying with the normal distance () and given as:

[ sh(/ian) -
£,(n) = —= [1 - <oshly ] (7.8)
L 9.1 cosh(J/ia)

Equation (7.7) was used to compare with the numerical velocity predictions at the mid-
plane of the channel as the entrance effects due to the finiteness of the computational
domain can be assumed to be negligible at this axial location. The practically useful
quatities such as the wall shear stress (¢ ) (directly related to the friction factor) and the
pressure drop across the channel were also compared with the numerical predictions. The
corresponding equations for these two quantities can be easily derived from their
definitions and for a sinusoidal velocity input are given by:
rw=12(—DP—)0,Umsin(wt+d>t) (7.9
h

Here o, is called as the wall shear stress augmentation factor which can be shown to be:

and ¢_ the lead phase angle to be added to the wall shear stress can be expressed as :

QRIGINAL PAGE IS
OF FOOR "QUALITY
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; z,=—§ [ i/I« - tanh (JIa) ] 17.10a,7.10b)

S&(Z,)] (7.11)

= - -1
¢t ¢u tan {m ( Zt )

The instantaneous pressure gradient across the channel can be obtained by integrating the
axial momentum equation across the channel and with little algebraic manipulations one

obtains:

dp B , o
- === U t ) 7.12)
= 48[th)op hax Sin{(wt+d, (

Here ¢, and ¢, are the pressure gradient augmentation factor and lead phase angle

respectively, and are given as:

0p=\J lo.cosd ]2 + [% +o.sind]? (7.13)
Va ;
< +0,sin

b, = tan1| L2 b (7.14)
F o, cosd,

Few interesting points need to be mentioned about the effects of Valensi number
on the augementation factors and phase angles for the wall shear stress and pressure drop.
When the Valensi number (y/g) is low the augentation factors (g, and o,) approaches
unity and reduce to the familiar steady state formulations. For high 3 the phase angles d,
and ¢, asymptotically reach 45° and 90° respectively or the wall shear stress and pressure

drop are out of phase with the inlet velocity by these angles. In addition for high 5 the
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augmentaion factors ¢_ and o, reach as high as 8 and 120 times the steady state value.
Figures (7.2) and (7.3) graphically demonstrates these effects, the augmentation factors
are show in Fig. 7.2 and the phase angles in Fig. 7.3 both of them plotted versus the
Valensi number (y3).

Equations (7.7),(7.10) and (7.11) were used to compare the axial velocity profile, wall
shear stress at the axial mid-plane and the instantaneous pressure drop across the channel

for the cases R, and R,. The results of these comparisons are discussed next.

7.1.3 Comparison with Numerical Simulation

Axial Velocity

The regenerator cases (R, and R,) were chosen to validate the code against the
analytical solution. Fig. (7.4) shows a plot of the normalized axial velocity ( 7/ Uny )
vs. the nondimensional transverse distance (y-/g) for the case R, Re .~ 75 and y5=2.5
at different velocity phase angles (from 30° to 360" with 30° increment). The symbols
are used for the analytical solution (Eq. 7.7) and the dotted lines are used for the
numerical predictions. It should be appropriate to mention that the comparison was made
at the axial mid plane ( x = 1,/ 2 ) as shown in Fig. 7.1. The velocity profile exhibits the
familiar parabolic profile due to the low frequecy (Valensi number) and is completly in
phase with the input velocity. The agreement between the analytical solution and the
numerical prediction is excellent. Fig. 7.5 shows a similar plot for the case R,, Re, ..~
12000 and 3= 400. Here one can observe the effect of the high y5 on the velocity

profile, by the presence of a small Stoke’s layer near the wall and with the flow field
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almost uniform in the channel core. The rationale behind this phenomena being that the
flow reversal (switch in the flow direction) takes place before the viscous effects have
time to diffuse down along the radius. Also it can be observed from the Figure (7.5) the
flow reversal is also captured very accurately by the numerical code even for high ya.
Again it can be seen that the agreement with the analytical solution is excellent.

Wall shear stress and Pressure Drop

Figures (7.6) and (7.7) shows the normalized wall shear stress versus the velocity
phase angle at the axial mid plane for the cases R, and R, respectively. The
normalization factor chosen was the coefficient of the sine function in Eq. (7.9). The
symbols denote the analytical result (Eq. 7.9) the solid line represents the numerical
predictions. When the Valensi number is low, the T, (wall shear stress) is in phase with
the inlet velocity phase angle and its magnitude is exactly equal to the steady state value.
But for high y5 (case R,, Fig. 7.7) the T, is not only 45° out of phase with the inlet
velocity but also its magnitude is augmented four times the steady state value.

Figures 7.8 and 7.9 show similar figures for the normalized pressure drop along
the channel plotted versus the velocity phase angle , again the symbols are for the
analytical solution (Eq. 7.12) and the solid line for the numerical prediction. Fig. 7.8 is
for the low valensi number case (R,) and Fig. 7.9 for the high y5 case (R,). But unlike
the wall shear stress the pressure drop for high vz is 90" out of phase with the inlet

velocity and its magnitude is 40 times the steady state value.
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7.2 Comparison with Experimental Data
This section is concerned with the comparison of the numerically predicted
solutions with the experimental work carried out at the University of Minnesota. For the
sake of clarity a brief description of the oscillatory flow rig at the University of

Minnesota is also included.

7.2.1 Description Of the Experimental Setup

The experimental study by the researchers at University of Minnesota was
initiated to help understand the thermo-mechanical energy losses in the free piston Stirling
engines in order to come out with better designs. Their preliminary survey suggested, a
better understanding and characterization of the laminar to turbulent flow transition in
oscillatory flows (see Sueme and Simon,1988). The initial efforts were concerned with
understanding the mechanisms by which transition takes place and generally character-
izing the fluid mechanics of oscillatory flows. Recently (see Seume et al.,1992), detailed
measurements were carried out at a particular operating point,namely that of the heater
tubes of NASA’s Space Power Research Engine(SPRE). The velocity measurements were
taken at four axial stations located along the test section as shown in Fig. (7.10). Figure
(7.10) also demonstrates the flow oscillation in the test section 9or tube) being affected
by the piston-rod assembly. The test section is a circular pipe connected by smooth
nozzles at both ends; the smooth contour of the nozzles ensures no flow separation upon
entry. One end of the test section is connected to the flow delivery section the other end

opens out to the room. The inflow conditions at the two ends are nearly symmetric and
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the axial locations are represented by g/ 4 where g is the distance from the open end of
the test section and it is also the complement of x /4 (g/d=1-x/d, where x is the
distance from the drive end of the test section). The Table 7.1 below gives the
dimensionless operating parameters for a typical heater tube of the Stirling engine, the

experimental test and the numerical simulation.

Table 7.1 : Experimental and Numerical operating parameters.
Parameters SPRE Heater Experiment Test Numerical Sim.
Re_,, 11700 11840 11840
Va 80.0 80.2 80.2
A, 1.03 1.22 1.22
L/D, 71.0 60.0 60.0

7.2.2 Experimental Observations
The preliminary experimental results carried out for different non dimensional
parameters identified transition from laminar to turbulent flow by two mechanisms :
> Convective triggering by the incoming turbulent fluid.
» Instability of the developing boundary layer prior to the arrival of the convected
turbulent fluid.

Based on this observations a semi-empirical transition model has been proposed

O™'GiNAL PAGE IS
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(see Simon et. al.,1992) which accounts for the transition from laminar to turbulent flow
effected by convective triggering of the incoming turbulent slug. The model is still in its
seminal stages and hopes to improve the predictions for the skin friction and heat transfer
coefficient by identifying the laminar and turbulent portions of the cycle at a given axial
location. Further discussion of the model is beyond the scope of this study and can be
found in Simon et al (1992).
7.2.3 Numerical results and Comparison

In order to correctly verify the numerical predictions care must be taken to
accurately simulate the experimental conditions. Figures (7.11a) to (7.11d) shows how
the friction factor compares against the experimental findings at the four axial locations,
x/d& 0.33,16,30,44 and the comparisons were made for the results obtained from the
first oscillation cycle (i.e. the velocities have not settled to their quasi-steady states). The
reason why the first oscillation cycle was chosen because the turbulent flow profiles, as
was observed in the experiments, showed a cycle to cycle independence. That is, upon
flow reversal the fluid was stagnant in the whole tube or had no history of the effects
from previous cycle. A probable reason is due to the high mixing (turbulent diffusivity)
capacities of turbulent flows, the velocity gradient near the wall were effectively
smoothed out. Hence when the mean flow decelerates to zero velocity, the complete flow
field in the tube also achieves no motion. Unlike in laminar flows, where due to relatively
Jow diffusion the near wall velocity can be substantial compared to the core flow near
flow reversal thus exhibiting a cyclic dependency. The experiments suggest a transient

behavior in the sense that as the cycle begins slug (uniform inlet profile) fluid accelerates
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as a inviscid (flat velocity profile) flow close to the centerline of the tube having a
growing boundary layer on the wall. These conditions are identical to when the fluid
accelerates from rest in the beginning of first cycle even though the experimental data
points are obtained after the flow has achieved a statistically steady state.

During the laminar portion of the cycle the friction factors predicted numerically
at the four axial positions compare very well with the experimental data as shown in the
Figures (7.11a)-(7.11d). The experimental data depart or show higher friction factors than
the computed data after a particular velocity phase angle at each of the axial position
except x/g=0.33. This phenomenon is attributed to the convective triggering of the
boundary layer from laminar to turbulent flow due to the arrival of the turbulent slug.
Whereas at x / g=0.33 which is close to the inlet the boundary layer is very thin and
stable preserving its laminar state throughout the cycle, but as we go further down along
the tube the growing boundary layer becomes very sensitive to the turbulent core and
transitions to turbulent flow, resulting in higher skin friction coefficient. The reason for
the high friction factor for the numerical results is that after the flow becomes turbulent
the fully-developed turbulent flow correlations were used. This was done to test an
empirical turbulence model (Simon et. al.,1992) for oscillatory flows to see how the
predictions compare with the experimental result for the complete cycle. Also at

x/D, =0.33 the calculated friction factor are over predicted compared to the
experimental data due to different inlet geometry and being close to the inlet sensitive to
the "entrance" effects. But as one goes down the tube "entrance” effects subside and

predictions improve expectedly.
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7.2.4 Brief Summary

The experimental setup has been described in sufficient detail and a basis
for comparison with the numerical computations derived. The rationale for using transient
as oprosed to quasi steady computed data was explained since the experimental data was
collected after the flow inside the tube achieved a statistically steady state or no cyclic
variations. Finally the accuracy of the code is corroborated by good agreement with the

experimental data in the laminar portions of the cycle.
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7.3 Friction Factor and Entrance Effects
The pressure drop required to set the fluid in motion is dependent on the so called
friction factor (¢, ) which is a nondimensional wall shear stress (¢ ). In the design of
heat exchanger it is very important to optimize between the thermal and friction losses.
The ¢, is one such quantity which gives an estimate of the pumping power required to

set the fluid in motion in an heat exchanger. The ¢, is defined as:

Cf=____r.i._ (7.15)
(1/2) 'p'Uiz

Here p, is the average instantaneous velocity across the cross section of the channel.
Hence it shoots to infinity at the flow reversal instants of the cycle (07, 180" and 3607
by the above definition since the average instantaneous velocity is zero at these points in
a oscillation cycle.

Figures 7.12, 7.13 and 7.14 plots the normalized friction factor versus the
dimensionless axial distance at different velocity phase angles for the Cases C,, Cs and
H, respectively. Only curves for half oscillation cycle (0° to 180°) is shown (excluding
the flow reversal points) due to the symmetry (in time and space) and the definition of

Cy - The friction factor is normalized by the instantaneous full developed steady state
laminar friction factor correlation (.i.e. CeRe, =16 ). In this particular half of the cycle
the flow enters from the left end of the tube and exits at the right end of the tube ( x / p,
=0t x/p, = 60 or 70). From these figures the effect of Re,, Va and 2 can be
seen and these are described next.

The pe _ and z_ together control the magnitude or level of the friction factor
max be
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and any instant of the cycle. From Fig. 7.12 and 7.13 representing cases C, and C; one
can see that the Cs value is higher for case Cs than for case C, because of the lowAI
even though the Re,,, is lower for case C,. This is can be attributed to the fluid inertia
associated with the smaller fluid penetration into the tube, hence more pumping power
has to be introduced in the case of low A In contrast the heater case H, has lower
values of friction factor because of the high A, (see Fig. 7.14). Although for the same
value of relative amplitude of fluid displacement (2 ) the magnitude of the friction factor
increases with Re ..

At some instants of the oscillation cycle the friction factor is negative, as can be
seen from Figures 7.12-7.14 at 150° velocity phase angle. Though it is unrealistic for the ¢,
to be negative it simply means that the viscous forces augments the pressure forces. The
negative value is caused by "backflow" at the walls or the velocities in a small viscous
region close to the wall are flowing in a direction opposite to the primary flow direction.
This situation is typical of high ya flows such as the cases C,, Cs and H,, where the
viscous effects are concentrated near a small region close to the wall (Stoke’s layer) with
an inviscid core. The "backflow" or flow reversal at the wall occurs in the decelerating
portion of the cycle and happens earlier for higher ya which can be deduced from the
Figures 7.12-7.14. It should be noted here that the "backflow" at the wall is characteristic
of laminar oscillatory flows and does not exist when the flow is turbulent. The effect of
flow reversal can also be noticed at the tube exit (x/D, = 60 or 70) during the
accelerating portions of the cycle (30°) wherein the friction factor drops to value lower

than the asymptotic value. Another effect of Valensi number (v/3) is the amplitude of the

Q-
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friction factor at any axial location decreases with the v (see Figures 7.12-7.14). The
friction factor at any axial location is made up of a mean value plus a harmonic
component, the amplitude here refers to the amplitude of the harmonic function.

The "entrance” effects are directly related to the 2 value. Since it is difficult to
define fully developed flow in an unsteady situation it is difficult to define an "entrance”
length for oscillatory flows using the standard definition used for steady or unidirectional
flows. But for low A, such as case Cs (Fig. 7.13) the friction factor is almost constant
along the length of the tube at any given time except for a small region close to the
entrance. And, this small length of the tube (the "entrance” length) where the friction
factor drops from infinity to the constant asymptotic value, grows longer as the cycle
advances in time. Therefore the "entrance” length behaves unsteadily and for the case C;
reaches a maximum value of 25 diameters (x/D, = 25). Whereas for Cases C, and H,
(Figures 7.12 and 7.14) the friction factor does not reach to an asymptotic value at any
instant of the cycle hence an "entrance” length is hard to define. The reason ¢ p does not
reach a asymptotic value can be ascribed to the high operating A, values. But the drop
in the value of friction factor from infinity to a lower value occurs over a small length
for all the cases suggesting that the "entrance” effects are almost negligible. This
observation is in contrast to steady flows where the "entrance” length increases with the

Reynolds number.
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CHAPTER VIII

OSCILLATING FLOW HEAT TRANSFER

Once the momentum and continuity equations are solved for then the energy
equation can be solved for the thermal field. In this chapter the results of the thermal
analysis for the individual components of the Stirling engine are presented. First, the
thermal analysis for the regenerator which is a conjugate heat transfer type problem is
presented. In the section the code validation aspect is also covered. Second, the results
for the heater and cooler are presented with two different type of boundary conditions

(Symmetric and Asymmetric Inflow) are discussed and presented.

8.1 Conjugate Heat Transfer and Code Validation

In this section the conjugate heat transfer phenomena occurring in the
regenerator of the Stirling engine is discussed. A comparison of the numerical predictions

with the analytical results for the temperature profile is also made.
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8.1.1 Kurzweg Analysis (Analytical Solution)

For the two-parallel-plates channel with solid walls and connected at the
end to two reservoir at different temperatures (see Fig. 7.1), Kurzweg derived the solution
for the temperature profile within the channel and the solid. This phenomenon is very
similar to the one occurring in the regenerator of a Stirling engine. In the Stirling engine
the regenerator is placed between the cooler and the heater which ensures a temperature
gradient between the ends of the regenerator throughout the cycle. In the first half of the
cycle the flow enters from the hot end and heat is absorbed by the regenerator and in the
next half cycle when the flow enters from the cold end the absorbed heat is released to
the cold fluid. Thus regenerator acts as a heat source or heat sink during a complete
cycle.

The temperature profile for along the channel for a fully developed velocity was
derived by Kurzweg (1985a) for the geometry show in Figure 7.1. He assumed the

temperature profile to be given by:

T(x,y, t) = [T, + yagin) et®t] (8.1)
Here the term is the constant linear temperature gradient along the channel i.e. the
temperature is assumed to be varying across the channel (normal y direction) superim-
posed on a constant axial temperature. And the function g(n) captures the variation

in the normal direction and for the fluid region is given by g (n):

APe iPe , .
g.(n) =K,cosh (yiPran) + + f{n) (8.2)
f 1 n o‘Pr(Pr-1) «?(Pr-1) 1

and for the solid portion is given by g.(m):



The constants g, and K, are:

-APe

88

g.(n) = K,coshlJioPra (e-n)]

K, =

K,

a* (Pr-1) Pr cosh [ViPra]

K ,cosh[JiIPra] +

x YT tanh [ /ia) +,8 tanh(/IoFra (e-1)] } (8.4)
kx tanhl/IPra) +/0 tanhl/ioPra{e-1)}

A Pe

a*Pr (Pr-1)

cosh [JIoPra(e-1)]

8.1.2 Numerical Predictions and Comparison

Cases R, and R, are the test cases used to compare the numerical predictions for

the conjugate heat transfer problem with the Kurzweg analysis (1985a) presented above.

The operating parameters for these cases are listed in Table 8.1. Since the solution for

the temperature profile (Egs. 8.1-8.5) are based on the flow being driven by a sinusoidally

varying pressure gradient they have to be modified to account for the sinusoidal velocity

input boundary conditions.

Table 8.1: Test cases investigated for the conjugate heat transfer.

TEST Remax vVa L / D} Twall Twes t Teas t Ar
CASE
R, 75 2.5 60 n/a 274 273 0.250
R, 12000 400 60 n/a 274 273 0.250

ORIGINAL PASE IS
OF POOR QUALITY
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Essentially this involves two changes, first there will be a phase difference (¢ )
added to the time variable (, ¢ and the function £ (y) in Eq. (8.2) should be replaced
by £, (n) found from Eq. (7.8). The rationale behind this was explained in the fluid
flow section. With these modifications the analytical temperature profile for a sinusoidal

velocity input is given by:

T(X,y,t) = [ Tx+yag(n)e(imt+¢?) ] {(8.€)
Where g (n) is got from Eq. (8.2) or Eg. (8.3) depending on the fluid or the solid portion
respectively. As mentioned earlier the function £ (n) should be replaced by the function £_(n)

given by eq. (7.8). The phase difference is given by:

¢T=1800+¢U (8.7)

The ¢, is gotten from eq. (7.6) and the 180" addition is due to the fact that the
temperature gradient () used by Kurzweg is opposite in sign to the one used by the
numerical simulation.

Figure 8.1 shows the temperature profile for case R, Re .~ 75 and ya= 2.5.
The instantaneous temperature (7 - 7T,) Or more appropriately the instantaneous
temperature fluctuation is plotted versus the normalized distance from the centerline to
the wall (y direction) at different velocity phase angles ( from 30 to 360" with 30°
increment). The symbols are used for the analytical solution and the dotted line for the
present work, the profiles were compared at the axial mid plane (7, /) so that the
entrance effects are negligible. Since the Valensi number () is low the profile exhibits

the familiar parabolic shape as found in the steady state solution. Also the temperature
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profiles at different velocity phase angles for the conjugate heat transfer
problem, Case R, :Re,, =75 and va=2.5.
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gradient at the wall changes sign with the flow reversal or the wall heat flux is in phase
with the mean or inlet velocity. The temperature fluctuation is almost zero in the solid
because of the high heat capacity of the solid hence the constant K, in Eq. (8.3) tends to
zero with the result that g_(y) is zero for the whole cycle. Otherwise for low va and
low g (ratio of heat capacities of the solid and fluid) the temperature fluctuations within
the solid is as high as in the fluid.

Figure 8.2 shows a similar figure for case R,, re_ = 12000 and yz= 400 which
is a high y5 case. Some interesting points to notice about this case are the presence of
an inviscid core just like in the velocity plots due to the high frequency and the sharp
temperature gradient at the wall which is out of phase with the incoming fluid. Also the
temperature fluctuation is zero within the solid due to both the high heat capacity of the
solid and the high ya. In fact one of the effects of high frequency on the temperature
fluctuations in the solid (for a low heat capacity) is to bring the fluctuations down to zero.
But due to both these factors present in this particular case it is difficult to isolate which
has a more pronounced effect on the temperature distribution. Further the temperature
fluctuation for case R, is more (¥0.17) than for case R, (¥0.035) which is a direct of the
frequency or the presence of an inviscid core.

Form Figures 8.1 and 8.2 one can clearly see that the agreement between the
analytical solution and the numerical predictions are excellent. The reason for the poor
agreement for the high y3 case than the low y5 can be attributed to the limitation of the
machine in evaluating complex numbers algebra. Therefore special limiting procedures

had to be performed on Eq. (8.2)-(8.5) so as to simplify them,
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8.2 Svmmetric Temperature Inflow
The results for the heat transfer in circular tubes for a symmetric temperature
inflow conditions with constant wall temperature are presented now. This type of heat
transfer situation is close to what is found in the cooler and heater tubes of a Stirling

engine. Table 8.2 lists all the cases investigated which cover a wide range of pe

max’

Va
and gz . All the cases beginning with "C" stand for the cooler conditions and "H" for the
heater conditions. In all the cases the flow enters the tube from the west end of the tube
for the first half cycle (0° to 180“), and then reverses and enters from the east end of the
tube for the next half cycle (180° to 360°). In the case of symmetric inflow the flow
enters the tube with the same constant temperature (enthalpy) for both half cycles. All
the calculations were done for 52x52 grid and the runs were made on a Cray YMP 8/3128
(sn 1040). Each run took approximately 1000s of CPU time for each cycle and at least
3 cycles were needed for cyclic convergence or for the temperature profile to settle down
from one cycle to the other. The computaional domain with the appropriate boundary
conditions is sketched in Fig. (8.3), due to symmetry the computations were done only
for half of the tube.
8.2.1 Temperature Profiles

Figures 8.4 and 8.5 are 3D plots for the nondimensional temperature profiles for
the whole tube for two cooler cases with the same A, The nondimensional temperature
( |(r-T1,)/(T,,-T,) | ) is plotted against the pipe radius and the axial distance at
different velocity phase angles ( from 0° to 180° with 30° increment). Since the

temperature inflow is symmetric the other half cycle is a mirror image of the events
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Table 8.2: Test cases investigated for symmetric temperature inflow.

TEST | Re,, Va | L/D, | Toars | Twese | Toast A,
CASE
C, 15000 175 60 325 340 340 0.714
C, 30000 350 60 325 340 340 0.714
C, 60000 700 60 325 340 340 0.714
C, 10000 200 70 325 340 340 0.357

Cs 20000 400 70 325 340 340 0.357

Cs 40000 800 70 325 340 340 0.357

H, 8250 44 70 650 620 620 1.340

H, 16500 88 70 650 620 620 1.340

H; 33500 176 70 650 620 620 1.340
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occurring in the first half. The direction of the flow is pointed by the thick bold arrow
at any instant of time.

Fig. 8.4 shows the cooler case C; ( Re_, = 30000, va= 350, /D, = 60 and 2 =
0.714 ), the flow enters with constant temperature (340 K) and gets cooled due to the
presence of a cold wall maintained at a constant temperature 7= 325 K. One can see
as the cycle proceeds the thermal front advances into the tube but due to the high 5 the
profile across the radius does not develop into the familiar parabolic shape. The cooling
process occurring is very complex due to the presence of cold and hot regions, at the
beginning of the cycle (0 the fluid is cooler at the entrance (for this part of the cycle)
x/D, = 0 than at the exit x/p, = 60. The presence of these cold and hot "spots”
effects the heat transfer mechanism in the tube as the flow proceeds along the tube. If
one looks at the trace of the centerline ( ;=0) throughout the half cycle (0" to 180°), the
temperature drops to a minimum at some axial location at any point in the cycle and then
monotonically increases due to the presence of the hot spot ahead (in the axial direction).
During the course of the cycle as the thermal front advances this temperature minimum
moves further down the tube or closer to the exit and the A, being less than 1, this
minimum temperature stays within the tube. Further due to the high y5 the temperature
gradient at the wall (= £ 0.05) is very steep suggesting a high wall heat flux.

Fig. 8.5 shows a similar 3D plot for case C, ( re_, = 15000, va= 175, L/D, =
60 and A" 0.714 ), the cooling mechanism is similar to the one described for case C,
except for few perceptible differences. The Valensi number (yg) for this case being

lower than case C, the hot temperature core is thinner than the previous case which makes
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the temperature profile to be closer to a parabola (e.g. see at 0° velocity phase angle at x / D,
=0). Also the temperature gradient of the wall is less steeper thus implying a lower wall
heat flux. Figures 8.4 and 8.5 one can notice the effect of same A, by the maximum
penetration distance of the thermal front into the tube which is the same, despite the wall
heat flux being different. The temperature profiles are effected due to different ya.

Figures 8.6 and 8.7 are 3D plots for cases H, ( ge__ = 16500, ya= 88, L/D,=
70 and 2 = 1.34) and C; ( e, = 20000, va= 400, r/p,= 70 and 2 = 0.357)
respectively. Each case is for different A, and case H, is representative of the operative
conditions of a heater in the Stirling engine where case Cs was chosen to isolate the effect
of the relative amplitude of fluid motion. Once again the nondimensional temperature is
plotted against axial distance (x/D,) and the radius of the tube ( ). In Fig. 8.6 which
is the heater case H,, one can observe that as the cycle proceeds the thermal front has
penetrated the whole axial distance and the cold "spot" which exists at the exit (x / D=
70) is pushed out completely from the tube (at 90°). Whereas for the case C; shown in
Fig. 8.7 the hot "spot" (since it is run as a cooler) exists throughout the half cycle. Also
one can notice that lower the Valensi number ( 73) the more parabolic the profile is ahead
of the thermal front (or the inviscid hot or cold temperature core is thinner for low ya.
8.2.2 Contour Plots

8-2

In this section the temperature contours for three of the cases listed in Table #X
will be presented and discussed. These contour plots augments the discussion presented
in the temperature profile section (see above).

Figure 8.8 shows the temperature contours at different velocity phase angles for
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case C, (A= 0.714). Again the contours are shown only for half of the cycle (0" to 180%)
due to symmetrical inflow conditions with the hot fluid entering the tube (at 7= 340 "K)
while the wall is maintained at a colder temperature (at 7= 325 “K). At the beginning
of the cycle (0°) one can see the presence of hot fluid in the core of the tube (bigger at
the east/left end of the tube) due to the history of hot fluid from the previous cycle. As
the cycle proceeds during the acceleration portion (0° to 90°) advances down the tube and
continues to advance during the deceleration portion of the cycle (90° to 1807 although
at a slower rate. On the other hand the residual hot front from the previous cycle is
retreating out of the tube during the acceleration portion of the cycle and disappears
completely during the deceleration portion of the cycle .(90“ to 180°). The presence of
two hot fronts (one close to the entrance and the other close to the exit), in most of the
cycle, is attributed to the e being less than I.

Figure 8.9 shows the temperature contours for the heater case H, (3 = 1.34). The
contours are shown only for half a cycle (0" to 180°) with cold fluid (heater) entering the
tube ( 7= 620 K) while the wall being maintained at a hotter temperature ( 7= 650 K).
In this case the cold front advances into the tube from the left end during the acceleration
portion of the cycle and continues to advance during the deceleration portion of the cycle.
Whereas the residual cold front present at the right end of the tube (at (") is pushed out
of the tube during the acceleration portion and disappears completely during the
deceleration portion of the cycle. It is interesting to note that the core of cold fluid in the
tube is thinner than the case C, (Fig. 8.8) due to lower ya.

Figure 8.10 shows the temperature contours for the cooler case C; ( A= 0.357).
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Again, due to symmetrical inflow conditions the temperature contours are shown only for
half a cycle. The hot fluid enters the tube at 7= 340 °K while the wall is maintained
at a colder temperature (at 7= 325 K) so as to allow the incoming fluid to cool. Just
like in the previous two cases the entering hot thermal front advances into the fluid during
the acceleration portion and continues to advance but at a slower rate during the
deceleration portion of the cycle. Further the residual hot front concentrated near the exit
(right end) retreats out of the tube as the cycle advances but, contrary to the previous two
cases. does not disappear completely from the tube at end of the half cycle. This can be
attributed to the very low value of A, (0.357). Despite the high 5 the hot fluid core is
thinner at the axial center of the tube than at the ends of the tube which is due to the very
low A_- Since the hot thermal front does not penetrate completely into the tube this
means that around the axial center of the tube (away from the ends) the heat transfer
mechanism is dominated by molecular conduction than by convection. This implies that

heat transfer rate is very poor away from the ends.
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8.2.3 Section Average Temperature (Ta)

Figures 8.11-8.13 shows the normailzed section average temperature (T,) across
the cross-section of the tube versus the dimensionless axial distance ( x/D, ) at different
velocity phase angles for three cases. The section average temperature is a area weighted
temperature across the tube and is defined as:

_— [raa (8.8)
e A
Here 4a is an element of cross-section area, and z is the total cross-sectional area of
the tube or channel. All the figures (8.11-8.13) are shown only for half of the oscillation
cycle due to the symmetrical inflow.

Figure 8.11 shows the normalizd T, Versus x/p, for the cooler Case C, (yg
=350) at different velocity phase angles. At the beginning of the cycle (0°) most of the
fluid is hot at x/ D, =60 and cold at x/D, =0 due to the hotter fluid leftover from the
prvious half-cycle. As the flow accelerates the fluid cools rapidly due to the presence of
the cold wall and the cold fluid present close to the entrance ( x/ D, =(), and this
temperature drop continues till it reaches a minimum value at certain axial locations (see
curves for 30°,60°,90°) after which it increases monotonically down the tube. This
minimum value keeps changing its axial location as the cycle goes on. But the level of
temperature keeps dropping after the minimum temperature axial location and can be
easily seen from the Figure 8.11 at x/D, =60. The displacement of the minimum T,
is dependent on value of z_too. From Figure 8.12 which is for case H, ( vz =88) this

minimum value moves out of the tube as the cycle advances due to A, being greater than
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one. The "minimum" temperature for the heater should actually be read as the maximum
temperature as the normalized T, is plotted instead of the true temperature. In the heater
Case H, the basic heat transfer mechanism is the same as described above for case C, but
the direction of heat transfer reversed since the function is to heat the fluid. The Valensi
number ( yg) effects the amplitude or temperature fluctuation at any given axial location
with time. The heat transfer mechanism behaves similarly for the same A, -
8.2.4 Bulk Temperature

The use of the bulk temperature is very prevalent in the design of heat exchangers.
Also known as the mixing cup temperature it is a velocity weighted temperature defined

as:

pUTdA
T, =
P U

Here p, and u, are the mean density and velocity respectively. The mean velocity is

(8.9)

given by the mathematical expression:

u _ Juaa (8.10)

m A
In oscillatory due to "backflow" or conuterflow at the walls at high v this
definition breaks down apart from the fact that the mean velocity goes to zero at 0°, 180"
and 360° giving rise to unpysical values for the bulk temperature. Due to these
discrepencies some researchers (Patankar and Oseid, 1992) have used the modulous of the
velocity in Eq. (8.9) instead of the true velocity. With this change the Bulk temperature

( Tb) definition is now given as:
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_ JelulTda (8.11)

T
b P.UA

Figures 8.14-8.16 plots the normalized bulk temperature profiles versus the
dimensionless axial distance ( x/ D, ) atdifferent velocity phase angles for the Cases C,,
C, and H, respectively. Once again the Cases were chosen such that they represent
different A, values as the effects and transfer mechanisms are similar for the same 2
value. The behaviour of the Ty is similar to the trend of T, except for few differences.
These differences can be observed by comparing Figures 8.13 and 8.16 which are for the
same heater Case H,, the amplitude of the bulk temperature ( T,) is different from the
amplitude of section average temperature (1) fluctuation at any fixed axial location and
even the magnitude of normalized value is different. This differences are of relatively
minor consequence compared to the phase difference that arises between the 7, and the

wall heat flux (g, and which will be shown later in the chapter. The presence of a

phase difference is due to the definition of T, (Eq. 8.11) where the product of the local
axial velocity ( 7) and temperature ( 7) is taken to evaluate T, - And, when the v is
high there is phase difference between the velocity and temperature such that their

inntegrated product over a cross-sectional area is different, i.e a situation where the T,

is zero can arise if 7 and 7 are 90” out of phase.
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8.2.5 Wall heat Flux (qwﬂ)
The wall heat flux (g, is the parameter which governs the effectiveness of ay
heat exchanger. Figures 8.17-8.19 plots the ¢,/ normalized with the maximum inlet

enthalpy ( P Upax CpTin ) versus x/p, = at different velocity phase angles for the three
Cases C,, C; and H, representing different Ar’s. The negative wall heat flux values
indicates that the direction of heat transfer is from the fluid to the wall, i.e the fluid gets
cooled. The general trend is the wall heat flux increases along the length of the tube at
instant of the cycle and then increases to a maximum or minimum value (depending upon
whether it’s a cooler or heater case) along the length of the tube and then starts to
decrease or increase for the rest of the channel length.

Since the wall heat flux is an important design parameter an attempt has been
i i
made to correlate the g/ asa function of A,» Re,,, Va and x/D, for all the test

cases investigated. The correlation process consisted of two important steps:

> In the first the advantage of symmetric inflow conditions was taken. That is, the
correlation effort was concentrated for only half oscillation cycle.

s The second step involved Fourier analyzing the data for one half oscillation cycle
(0° to 1807 and then correlate the resulting harmonics.

The correlations were done using curve fitting software and was sufficiently tuned to

handle multiple curve such as arising in oscillatory flows. The correlation arrived at has

the form:

A look at the above correlation reveals that a. consists of a mean value ( al)
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ol
q /"
n

- qm//+q2//.5in(2wt+(p2) (8.12)

and an even harmonic component. ¢,” is the amplitude of the harmonic component and &

phase difference relative to the mean or inflow velocity and ¢/ is a heat flux
normalization factor used. As it can be seen the variation of wall heat flux is mathemati-
cally and literally complex in oscilatory flows. All the coefficients are functions of all
the nondimensional parameters and are mathematically found to be:

v JVaRe," !
" 0.312-0.1-42

{1+5.5x105-¢*%-(0.5-4_)(x/D,)?

+ [0.84+(1.051//A;)](A,-0.5)(1-A,) x/D, (8.13)

+ [0.21+0.14371n(A&,) 1 (x/D,) 25}

The mean wall heat flux ( ¢”) takes the following form:

dn = (1.16) [[-1+0.15(x/D,) +7.5X/D,] (8.14)

and the other coefficients are:

&' = -0.2+3.0x10731.e”%/PW 4 [1/(0.26+0.0734,)](x/D,)°5 (8.15)
r h

G, = 262.4-24.86-[In(A4,)]%- e8¢ 262 AN (5 2.

{ l+e[-4.755-2.4-A,21nm,)],(X/Dh) ) (8.1€)

The above equation is valid for the first half oscillation cycle (0° to 180%) for the
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Figure 8.17. Normalized Wall heat flux (¢,”) versus the dimensionless axial
distance ( x /D, ) at different velocity phase angles.
Case C, :: Re,,,= 30000, va= 350 and A = 0.714.
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1178

second half oscillation period the same equation is to be used but with x/D, being
replaced by [, - x/D, ] in all the above equations.

It can be seen that the correlation coefficients take a very complicated functions
of A, and x/ D, The above equation was used to validate the numerically calculated
wall heat fluxes ¢ . Figures 8.20-8.22 shows plots the ratio of numerical wall heat flux
to the wall heat flux calculated using the correlation (Eq. 8.12) at select velocity phase
angles for the cases C,, Cs and H,. From the figures it can be concluded that the that the
correlation predicts the numerical ¢, /" within 10% for the three cases for the velocity
phase angles shown. The prediction is especially good near the centre of the pipe. the
relatively poor prediction for low A, Values (see Fig. 8.23) has been caused by optimizing
trying to optimize the correlation for higher A, values (Cases C, and H,).

8.2.6 Heat Transfer Coefficient
The heat transfer coefficient is usually represented by the Nusselt's number ( pr;)

which is defined as:

¢1D, (8.17)
[AT] k

Nu =
Here the AT is the reference temperature difference can be based either on section
average temperature () or the bulk temperature ( T,) thatis A 7= T, " Ta] or [ T, -
Tb]'

Since the heat transfer coefficient is the variable used in most heat exchanger

design. care should be taken as to how it is defined. As mentioned earlier the T, and
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T, behave very different from each other in oscillatory flows thus making it very
ambiguous as to how the temperature difference should be taken to evaluate the heat
tansfer coefficient. This fact is demonstrated by the Figures 8.24a and 8.24b, in the
former figure the Nusselt’s number based on T, while in the latter it is based on Ty for
the Case C,. When the section average temperature (r,) is used the the wall heat flux,
Nusselt’s number and T, are all in phase with each other. Whereas when Ty (Bulk
temperature) is used they are all out of phase with each other (see Fig. 8.24b). Moreever,
when T, is used the Nusselt’s number shoots to infinity at flow reversal points (0", 180"
and 360°). It should be noted that the two plots show symmetry in time i.e. the thermal
cycle is repeated twice for one flow cycle, this due to the inflow temperature symmetry

and the plots are made at the channel mid-plane.
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8.3 Asymmetric Temperature Inflow

In this situation the flow enters the tube with a different temperature from one-half
cycle to the other. In the Stirling engine heat exchangers this is the type of temperature
boundary condition one encounters due to the fact the heat exchangers are arranged
connected together. Table 8.3 list the cases investigated under the heater and cooler
conditions as can be seen these are similar to the symmetric temperature inflow condition
cases except for the inlet temperatures.

The asymmetric temperature inflow heat transfer situation is complicated by the
presence of an additional driving potential or the presence of axial heat conduction.
Figure 8.25 shows an schematic representation of the cooler with asymmetric inflow
temperature boundary conditions. In the first period (0° to 180" the hot fluid ( T,)
enters from the left end of the tube and the second half period (180° to 360" it enters
with a colder temperature ( T.) from the right end, with the wall being maintained at a
colder temperature ( ) than the either of the inflow temperature (i.e. T, < T. <

7, )- The heat transfer mechanism has two driving temperature potentials, ( T. - T,)
and ( T, - T. ) and depending upon which driving potential is greater the heat transfer
mechanism is accordingly effected. In the present study, both ( T. - T,) > T, -

T. ) and ( T. - T,) < (1, - T_.) have been investigated, from Table 8.3 it can be
seen that the former condition exists for the heater Cases HA,, HA, and HA, and the
latter for the cooler Cases CA,, CA, and CA,. The presence of axial driving potential
plays a very important role especially in oscillatory flows where the axial heat transport

is greatly augmented (See Kurzweg, 1985a) due to flow oscillation. And if the flow is
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Table 8.3: Test cases investigated for asymmetric temperature inflow.

max

va | L/D, | Toays | T

west easr

CASE

CA, 15000 175 60 325 350 330 0.714

CA, 30000 350 60 325 350 330 0.714

CA, 60000 700 60 325 350 330 0.714

HA, 8250 44 70 650 630 610 1.340

HA, 16500 88 70 650 630 610 1.340

HA, 33500 176 70 650 630 610 1.340
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Th > Ty > T

Figure 8.25. Asymmetrical temperature inflow boundary conditions
representation for the heater.
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at a high g, additional complications can arise due to the backflow at the wall thus
generating a additional temperature potential between the Stoke's layer and the central
core of the fluid.

Keeping the above observations in mind the temperature profiles for two

representative Cases are discussed next.

8.3.1 Temperature Profiles

Figures 8.26 (a),(b) and 8.27 (a),(b) shows the 3D temperature profiles for the
Cases CA, (Re,,, =30000, va = 350, A, =0.714, Tpoee = 390 K, Toaer ~ 330 K)
and HA, (Re,,, =16500, ya = 88, a, =1.340, Tooer = 030K, Tonee = 010 K) at
different velocity phase angles. In the discussion to be presented next the inflow
temperature from the west (left) end of the tube Trocs will be referred as T, (Hot
end) and the inflow temperature from the east (right) end of the tube Tomct will be
referred to as 7. (Cold end). Since the inflow is asymmetric with time the profiles are
shown for the complete cycle.

Figure 8.26 (a),(b) shows the 3D temperature profile plots for Case CA, (3 =
350) in the whole tube for every 30 increment of the oscillation cycle (30°,60°,90",...,
360%). In the first half cycle (0" to 180°) [ Fig. 8.26a ] hot fluid with temperature T, =
350 °K enters from the west end of the tube and in the next half cycle (180° to 360°) [
Fig. 8.26b ] the flow enters from the east end with a lower temperature . =330 °K
with the wall being maintained at the lowest temperature T, = 325 K. At the

beginning of the cycle the flow enters from the hot end with T, (350 °K) with most of
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the tube at a colder temperature due to the temperature history of the previous cycle.
When the cycle begins most of the fluid in the tube is at a colder temperature T_ (330
“K) due to the temperature history effect of the previous cycle. Then the hot thermal
front advances into the tube from the west end of the tube (x/ D, =()) as the cycle
proceeds (60°) pushing the cold thermal front out of the tube ( x/D, =60), just like in
the symmetric inflow situation. But due to the presence of the driving potential ( T, -

T.. ) the hot thermal front does not appear till late in the accelerating phase (60"). The
effect of high vz can be seen by the presence of thick hot central core and due to ( T, -

T,) < (7T, - T_), the temperature of the thick central core never falls below T.
(330 °K) in the whole cycle despite the presence of a much colder wall ( T, = 325 K).
Further the effect of this driving potential can be seen forward of the hot thermal front
where the temperature of the core drops almost quasi-linearly to the temperature of the
cold front (see Fig. 8.26a at 60°,90%). As the hot thermal front advances into the tube in
time the fluid ahead of it (near x/D, =60) gets cooled by the colder wall but due to the
weaker driving potential ( T. - T, ) the temperature does not fall below T. - When
the flow reverses (after 180" velocity phase angle) and starts from the right end of the
tube ( x/ D, =60) most of the fluid in the tube is now at the hotter temperature T, (350
K). Also the driving potential ( T, - T,.)now acts in a direction opposite to the flow
direction, thereby the hot fluid present near the left end of the tube ( x/D, =0) cools
rapidly as the second half cycle proceeds (210 to 360%). Hence it aids the cooling
process done by the colder wall temperature.

Figures 8.27a and 8.27b shows the 3D temperature profiles for Case HA2, pe

max



138 12!
=16500, va= 88,2 =130, 1, =630K, 7, =610Kand 7 =650 K.

In this case the longitudinal temperature driving potential ( T, - T, )is greater than the
axial temperature driving potential ( T, - T.)- Hence the heat transport from the wall
dominates over the axial heat transport. In the first half of the cycle (0" to 180°) the flow
enters from the west or "hot" end with T, = 630 °K and the next half cycle (180" to
360°) the flow reverses and enters from the east or "cold” end. Figure 8.27a shows the
temperature profiles for the first half cycle, as can be seen the effect of the advancing
thermal front appears quickly at around 60° velocity phase angle. Prior to that the flow
within the tube is cooler than the incoming fluid due to the temperature history of colder
fluid entering from the "cold" end (see Fig. 8.27b at 360°). Because of high A, the front
starting from / D, =0 advances into the tube and continues to advance as the cycle
proceeds. Since the flow is in the same direction as the axial driving potential ( T, -the
whole tube gets heated up to more than the incoming fluid temperature at the end of the
half cycle (180°). When the flow reverses (180" to 360°) thereby opposing this axial
temperature driving potential the heating process is not as effective as for the previous
half cycle (see Figure 8.27b) despite a high longitudinal temperature driving potential.
Therefore at 360° one can observe that the flow actually "cools" at the exit (in this
situation  / D, =0) rather than increase in the temperature.

Hence it can be concluded that the axial temperature driving potential plays a

crucial role in the effectiveness of the heat exchanger during the whole complete cycle.
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CHAPTER IX

CONCLUSIONS

A summary of the computational results for the flow and thermal analysis in three
different components of the Stirling engine, namely, Regenerator, Cooler and Heater are
presented next. The cases investigated are summarized in Table 6.1 and they represent
the operating conditions of NASA Space Power Research Engine in terms of Re,,, Va

L/D,»and a . In actual engine operating conditions, all the cases examined (excep!
for Case R,) should go through the laminar/ransition/turbulent flow regimes throughout
the cycle. This study was focussed on the effects of oscillatory flow under laminar flow
conditions with constant thermophysical properties.

Cases R, and R, resemble the Regenerator and have been modeled using the conjugate
heat transfer problem with a two-parallel-plates channel. Cases C,, C, and C, as well as

H;, H, and H; are modeled using the circular pipe geometry with isothermal wall,
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resembling the Cooler and Heater respectively.
The conclusions from the computations are as follows:

> The fluid flow and heat transfer for regenerator (Case R,) are quasi-steady
i.e. the velocity and temperature profiles are parabolic and in phase. For
high y3 (Case R,) "backflow" or flow reversal takes place near the wall
during the decelerating portions of the cycle resulting in flat temperature
and velocity profiles in the core of the channel. In these situation the
viscous effects are restricted to a small region next to the wall and is
known as the Stoke’s layer.

s The Cases R, and R, were not only used to study the foil type regenerator
but also to validate the numerical code by comparing the computational
results with the analytical solution under similar operating conditions. The
comparison was not trivial because the analytical work was based on
oscillatory pressure boundary condition for an infinite channel, while the
computational work was done for a finite channel with sinusoidally varying
velocity boundary condition. The numerical results compared very well
with the reformulated analytical results.

- For oscillatory flows in parallel-plates-channel the wall shear stress ( ¢ )
and pressure drop (A p) are augmented by almost factors of 5 and 80
respectively, as the vy increases. Also they are out of phase with the
velocity by 45° and 90° as the y5 increases.

. The instantaneous entrance length is controlled by the A, value. For high A,
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values (H,-H; & C,-C,) it is difficult to define a fully developed flow

conditions as the instantaneous friction factor does not settle with the axial
distance. But in general the entrance effects are restricted to a small region
into the channel.

The heat transfer results show for the cooler and heater with symmetric
temperature inflow conditions show that the heat transfer coefficient (at the
channel mid-plane) goes through two cycles per each flow cycle. Also, at
high v the temperature profile is out of phase with the velocity profile.
The heat transfer mechanism are controlled by the temperature "history”
effects which reveals itself by the presence of "hot" and "cold” spots during
the cycle.

The usual definition of the heat transfer coefficient in the case of
oscillatory flows is ambiguous and limited due to the way the temperature
difference is determined. The common practice of using the bulk or
mixing cup temperature ( T,) as the reference for evaluating the
temperature difference breaks down due to the flow reversal close to the
wall during parts of the cycle for high v, especially for laminar flows.
This ambiguity was resolved in the study by using the absolute value of
the velocity in the definition of bulk temperature and then evaluate the heat
transfer coefficient.

Using the section average temperature (r,) as the reference temperature

for the temperature difference, the wall heat flux, temperature difference,
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and the Nusslet's number are all in phase with each other and out of phase
with the velocity. The above quantities are all symmetric about 180" at the
channel axial mid-plane otherwise the shape is different from the first half
cycle to the second half cycle.

s Using the bulk temperature as the reference temperature the wall heat flux
and the temperature difference are out of phase with each other
(accordingly Nusselt’s number) and with the velocity. Also, the
temperature difference passes through zero and accordingly, the Nusselt
number shoots to infinity.

s The asymmetric inflow temperature conditions has a drastic effect on the
heat transfer mechanism. The two temperature driving potential (one axial
and the other longitudinal) control the direction of the heat transfer

mechanism.

9.1 Scope for Further Research

The primary objective of this research was to investigate the thermal field in a two
dimensional simulation of the Stirling engine heat exchangers. The analysis presented in
this study was done independently for each of the Stirling engine. The present study can
be augmented by:

- Connecting the components together, i.e., the regenerator, cooler and heater in one
direct two dimensional simulation to better understand the effects of oscillating

flow in each component.
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adding compressibility effects by introducing the two pistons found in the engine
and thus facilitate a complete two dimensional engine simulation.
introducing empirical turbulence model into the code to simulate the transition

from laminar to turbulent flow and thus improve the predictions for engine losses.
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APPENDIX B

DERJIVATION OF PRESSURE CORRECTION EQUATION

In the step 3) of the SIMPLE algorithm described in section 5.5.1 it was
mentioned that a pressure correction equation is needed to correct the velocities such that
the continuity equation. This pressure correction equation is derived from the discretized
continuity and momentum equation. The continuity equation (3.1) when discretized with

respect to cartesian coordinate system yields:
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eq. (B.1) is nothing but a mass balance over a control volume, substituting for the mass

fluxes for the respective CV faces from eq. (5.6), one gets:
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-—PSC—PGV * PUNSY - pUBy + p, V. 8x - p.V,hx = 0 (B.2)

Since the velocities U* and V* obtained from the solution of the momentum equations
in steps 1) and 2) of the SIMPLE algorithm were based on a guessed initial pressure field,

the continuity equation (B.2) will not be satisfied yielding a mass source S
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dv + p Uy - P USY + p Vidx - PVedx = 5, (B.2)

Here the ™" indicates the newly found velocities from the momentum equations. To
eliminate the mass source S,,» velocity corrections need to performed to enforce mass

corrections, then the velocity corrected continuity equation becomes by definition:
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dv + p(Ug+U' )by - p (Us+U' )y (B.4)

PP (Va+V ) 8x - p (Vi+V/ ) 8x = 0
Subtracting eq. (B.3) from eq. (B.4) yields an equation for the velocity corrections,
namelyv:
PU' By - p, U By + p,V/ bx - p V' 8x = -5, (B.5)

Now the velocity corrections are related to the pressure corrections P’. The discretized

momentum equations are used to couple the velocity and pressure. By linearizing the

velocity corrections it can be related to the pressure corrections as:
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V== (L), (ply-p'y) (B.9)
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Substituting eqs. (B.6)-(B.9) into equation (B.5) yields the so called pressure correction

equation:



46

/= / / / /
apP'p = @P'y+agP p+aPg+raypP' -5, (B.10)

a complete description of the coefficients can be found in Peri¢ and Scheuerer (1989).

This pressure correction equation (B.10) has the same structure as the other
discretized equations hence can be solved using the same rpatrix solver. The boundary
conditions for the pressure correction equations are derived from the velocities at the
boundary. The way this is achieved is by setting the velocity corrections at the
appropriate CV boundary face to be zero.

Since the pressure and velocity are nonlinearly coupled the SIMPLE algorithm
diverges if no underrelaxation is employed, in the present code the pressure is corrected

by the following equation:
P;" = Pp + afpP/,

where aF is the underrelaxation factor for pressure and is usually in the range 0.2-0.4.



